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Abstract—AI-generated speech is currently of such high quality
that it is indistinguishable from a genuine human speaker.
Expert listeners or purpose-built detectors are no longer able to
reliably distinguish between the two. Thus, it has been proposed
that AI systems which generate speech embed a secondary
signal or watermark that allows identification. AudioSeal is
currently the most advanced watermarking algorithm proposed
for this purpose and its resilience against common channel
and coding effects has been demonstrated. In this paper, we
present approaches which compromise AudioSeal, making it
unusable in practical settings. First, we describe two methods
that result in a shifting of the detector score distribution for
watermarked speech toward the distribution for unwatermarked
speech. Second, we describe a method that uses AudioSeal
watermarks generated for a particular speaker’s signal on a
different speaker’s signal, i.e. unmatched watermarks. These
unmatched watermarks, which could be imposed on genuine
human speech, are also inaudible, resilient, and result in a shift
of the detector score distribution away from unwatermarked
speech. Considering both approaches, we observe that AudioSeal
watermarks cannot be used to reliably identify AI-generated
speech from genuine human speech due to overlapping score
distributions. While our results are specific to AudioSeal, it casts
doubt on the approach of watermarking in general to identify
AI-generated speech.

Index Terms—Watermarking, AI Generated Speech, Deep
Fake, AudioSeal, Audio Watermarking, Watermark Attacks

I. INTRODUCTION

It is now relatively easy to build a high quality AI speech
generation model for a specific individual using only a few
seconds of audio recordings [1]. Thereafter, speech signals
can be generated for this specific individual such that expert
listeners or purpose-built detectors are no longer able to
reliably distinguish between AI generated speech and genuine
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human speech. As a result, people may be misled when
listening to generated or “deep fake” speech. For example,
using sophisticated attacks such as speech synthesis, systems
using voice interaction or voice based authentication can be
circumvented [2]. However, generated speech also has several
positive applications [3]. For example, generated speech can
help individuals with speech impairments or may be used in
education settings to generate teaching materials attributed to
a specific educator.

To safeguard AI-generated speech against misuse it has been
proposed that a watermark be superimposed onto the speech
so that it may be identified as AI-generated speech [4], [5].
The idea here is that stakeholders providing generative systems
add watermarks. Many application domains could be protected
using the aforementioned watermarking approach. Consider a
large social media platform where users share audio (and/or
video) content. Users could be protected from deep fakes as a
watermark embedded in any uploaded content could be easily
spotted. Rogue players will not adhere to such an arrangement
but it is assumed that a majority of stakeholders, and especially
the ones developing generative systems, have an interest to
comply. Future regulation may also require watermarking or
other technology to combat deception.

AudioSeal [4] is currently the most advanced watermarking
technique and it has been shown to outperform all other wa-
termarking techniques such as WavMark and Timbre. Recent
work [6] has proposed a set of benchmarks for evaluating the
robustness of audio watermarking against watermark removal
and watermark forgery and also confirmed the robustness of
AudioSeal compared to other methods. AudioSeal can easily
distinguish watermarked speech signals from unwatermarked
signals. The AudioSeal detector outputs a score for a speech
signal which is close to one for a signal containing a water-
mark and close to zero for an unwatermarked signal. Thus, a
decision threshold is easily found to distinguish both signals
with perfect accuracy [4]. Even if a watermarked signal is



subjected to edits (transformations such as noise or filters) near
perfect classification accuracy is possible. Edits to the signal
may reduce the detection score, however, the watermarked
signals can usually still be distinguished from unwatermarked
signals with near perfect accuracy. Some edits can reduce
the detection score dramatically such that watermarked and
unwatermarked signals cannot be distinguished. However, in
these cases, the speech signal is distorted significantly and a
manipulation is obvious. For our work, we utilize the objec-
tive metric, PESQ (Perceptual Evaluation of Speech Quality)
[7] for assessing such distortion. Speech quality degradation
which can be perceived by humans will be reflected in the
PESQ score making it a reliable measure widely employed in
quality testing, including by the authors in AudioSeal [4].

In this paper, we demonstrate that it is possible to: i) provide
an edit that decreases detection scores of watermarked signals
significantly while retaining signal quality (referred to as
compromised watermarked signals) and ii) propose techniques
to increase detection scores of speech signals (referred to as
using unmatched watermarks). As a result, score distributions
of watermarked signals and unmatched watermarked signals
overlap into each other. AudioSeal becomes a compromised
approach to watermarking AI-generated speech signals. The
specific contributions of the paper are:

• Reducing detection scores of watermarked signals: We
describe two methods that allow us to reduce the de-
tection score of watermarked speech while maintaining
quality. The first method is based on re-applying a wa-
termark and assumes access to the watermark generator.
The second method uses a common speech enhancement
method which puts no constraints on the attacker. Recent
work has employed speech enhancement [8], [9] as an
attack, however this requires a deep learning based model
to be effective unlike our enhancement method.

• Increasing detection scores with unmatched watermarked
signals: We show that it is possible to add an unmatched
watermark to any speech signal to produce unmatched
watermarked signals. These unmatched watermarked sig-
nals exhibit a high detection score while maintaining
speech quality. We also show that the average detection
score of a pool of unmatched watermarked signals can
be significantly improved if we further assume access to
the detector output.

• Compromising AudioSeal: We illustrate the impact of the
above techniques on a hypothetical social media platform
which uses AudioSeal for watermarking AI-generated
speech content. To the best of our knowledge, ours is
the first attempt to consider realistic attack scenarios and
to provide ROC curves which illustrate resulting error
rates that significantly degrade system performance.

In the next section we provide a background on AudioSeal
and provide an evaluation of its performance. In Section III
we describe methods for reducing detection scores of water-
marked signals while in Section IV we outline methods to
increase detection scores of unwatermarked signals. Section V

discusses the findings and specifically we describe the impact
of our work on practical application scenarios. Section VI
discusses related work. Finally, we provide several conclusions
in Section VII.

II. BACKGROUND

A. AudioSeal

Among the different audio watermarking techniques, Au-
dioSeal [4] is considered a superior model in various re-
spects, followed closely by Wavmark [5]. Audio watermarking
approaches are generally categorized into zero-bit, aimed at
detecting the presence of a watermark, and multi-bit, which
offers additional details during detection, such as the water-
marking model used and other metadata. AudioSeal supports
both zero-bit and multi-bit watermarking and is capable of
high-speed detection, making it well-suited for real-time ap-
plications.

AudioSeal comprises a generator and a detector that are
jointly trained, enabling the watermarking method to adapt to
the detector. This approach also involves training the gener-
ator on unwatermarked samples, enhancing its performance
in practical scenarios. The training process focuses on two
objectives: minimizing the perceptual differences between
original and watermarked samples, and maximizing detection
scores. To improve robustness against signal modifications,
the training samples undergo time-domain data augmentation.
Additionally, a localized loss function is employed to facilitate
sample-level watermark detection, allowing the identification
of watermarked segments within an audio signal [4].

The perceptual quality of watermarked signals produced by
both AudioSeal and Wavmark is comparable, with minimal
noticeable differences to listeners. AudioSeal incorporates
auditory masking during its training process, which enhances
the model’s robustness against various types of signal mod-
ifications. As a result, AudioSeal outperforms Wavmark in
handling edits such as noise addition and low-pass filtering.
However, its performance falls short with high-pass filtering.
This limitation stems from Wavmark’s approach, which em-
beds the watermark in the high-frequency components of the
audio signal, making it more resilient to high-pass filtering
compared to AudioSeal.

B. Notation

We begin by introducing slightly different notation from [4],
where we denote the watermark as

δj = G(s,mj) (1)

where s is the speech signal, mj is a 16 bit message, and G(·)
is the watermark generator. The watermarked signal is specific
to the 16 bit input message and is given by

yj = s+ δj . (2)

For sample n in yj , the detector D outputs a soft decision

p[n] = D (yj [n]) . (3)



A hard decision on whether yj is watermarked is obtained
by time-averaging p[n] to obtain a score and thresholding,
i.e. p > θ where θ is a decision threshold. In [4], the authors
set θ = 0.5 in order to maximize accuracy, defined as the ratio
of the True Positive Rate (TPR) to the False Positive Rate
(FPR), against various edits. For simplicity, in this paper, we
do not consider recovery of the message.

C. Baseline Results using the TIMIT Corpus

For the experiments in this paper, we use two portions of
the TIMIT corpus [10] as follows*. The first portion is from
the publicly-available TIMIT sample [11] and is composed
of 16 speakers each with 10 utterances (typically 3-5 s in
duration); the public TIMIT sample is a subset of the TIMIT
train set. For each utterance, we generate 10 watermarks using
random messages and apply to the corresponding utterance
for a total of 1,600 (matched) watermarked signals. This set
generated from the first portion constitutes the watermarked
signal set we use for our experiments. The second portion
uses 160 randomly-chosen speakers from the TIMIT test set
each with 10 utterances for a total of 1,600 speech signals; the
test set does not have speaker overlap with the train set. This
second portion constitutes the unwatermarked signal set we
use for our experiments. When watermarks generated from the
first portion are applied to utterances from the second portion,
we have unmatched watermarked signals.

Figure 1 shows the distributions of detection scores for
the 1600 watermarked and unwatermarked speech signals.
The detection scores are computed by passing the water-
marked/unwatermarked signals through the AudioSeal detector
and the average detection score for the respective histogram
bins are computed. As described in [4], detection score is
near 1 for watermarked signals and near 0 for unwatermarked
signals. With a threshold set to θ = 0.5, detection accuracy
is maximized to 100% for the TIMIT sample. Using a subset
of VoxPopuli, i.e. 10,000 speech signals each of duration 10s
and generating 10k watermarked/10k unwatermarked signals
from that set for each edit considered including filtering and
noising, the authors report a detection accuracy of 96% [4].

In addition, we investigate previously-reported results for
two edits which degrade accuracy - white noise and highpass
filtering. For our experiments with the TIMIT sample, we
adjust the detection threshold to maximize accuracy. Results
with white noise addition broadly follow the trends reported
in [4] with a drop in accuracy visible only with extreme PESQ
degradation. The results are included in Table I. For the High
Pass Filter (HPF) edit, the accuracy using TIMIT is broadly
similar to the accuracy reported in [4], i.e. 0.50 vs. 0.61. We
also show the results for one of our suggested approaches
for reducing detection score, speech enhancement in Table I
(See Section III-B). Although two recent works [8], [9] have
utilized deep learning based speech enhancement to defeat

*Although watermarks are intended to be applied to AI-generated speech,
we follow the approach in [4] and [6] that use genuine speech as a surrogate
for AI-generated speech since the quality is similar.
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Fig. 1. Distributions of detection scores for 1,600 watermarked speech signals
(shown in blue) and 1,600 unwatermarked speech signals (shown in red) from
the TIMIT sample corpus. With a threshold, θ = 0.5, detection accuracy is
100%.

watermarking, our approach demonstrates that a simple and
widely available enhancement approach works to this end.

In this case the mean detection score drops below 0.5 while
preserving the PESQ. In the next sections, we discuss its usage
in detail focusing on its impact in compromising AudioSeal
when used in combination with other approaches.

D. Threat Model

The adversary’s goal is to reduce the detection score for
watermarked AI-generated speech or increase the detection
score for genuine human speech to defeat the watermarking
system. Attacks assume different levels of access to the
watermarking system. We describe and label the assumptions
here and use the labels as reference throughout the paper.

(AG) Generator access assumption: The attacker has
access to the generator as a black box, i.e. they can create
a watermark as denoted by (1) but do not have access to the
internal workings of the generator. They can pass a speech
signal to it and obtain a watermark signal matched to the
input signal. This type of access is a realistic assumption in
many situations. For example, an online platform providing
watermarking as a service would allow users to watermark
AI content. It may also be the case that through a leak the
generator model is available.

(AD) Detector access assumption: The attacker can ob-
tain the average detection score p̄ from the watermarked signal.

TABLE I
DETECTION RESULTS FOR EDITS [4] - WHITE NOISE, HIGHPASS FILTER,
AND AUDIBLE NOISE SUPPRESSION, I.E. SPEECH ENHANCEMENT. FOR

EACH EDIT, THE THRESHOLD θ IS ADJUSTED TO MAXIMIZE DETECTION
ACCURACY. ALSO PROVIDED ARE PESQ OF SPEECH WITH WATERMARK

AND DETECTION SCORE p WITH THE EDIT.

Edit θ Accuracy (TPR, FPR) PESQ p

Noise (σ = 0.001) 0.623 1.00 (1,0) 2.11 0.96
Noise (σ = 0.01) 0.003 0.933 (0.902,0.036) 1.069 0.143
Noise (σ = 0.05) 7.03× 10−5 0.573 (0.22,0.069) 1.029 0.004
HPF (fc = 1500 Hz) 0 0.5 (1,1) 2.26 0.0008
Speech enhancement 0.147 1.00 (1,0) 3.98 0.47



When the detector is embedded in an online platform (back-
end) this condition will be difficult to match. Users may
submit signals for watermark testing but do not have access
to the detector itself. If the detector is available to everyone
to apply to signals this condition is easily met. The authors of
AudioSeal [4] suggest that the detector can be made publicly
available.

(AM) Message access assumption: The attacker has
knowledge of the encoded message mj within a signal. This
16 bit number may be used to identify a specific AI speech
generation service or provider and the same message will be
used for many signals. It is likely that mj is not a secret and is
known. The detector provides p[n] and also the message mj .
If the detector is available (AD) any message can be extracted.
Thus, assumption (AD) implies (AM).

(AW) Watermark access assumption: The attacker has
access to some watermarks. A watermark could be obtained
from various sources. For example, the attacker could supply
a signal to a watermarking service resulting in a watermarked
signal. Then the attacker can subtract the original signal from
the watermarked signal to obtain a watermark. They may also
have access to a leaked watermark signal. If the attacker has
access to the generator (AG) they can produce watermarks.
Thus, assumption (AG) implies (AW).

The main attack types we consider is similar to the no-box
scenario considered in audiomarkbench [6] with the adversary
having close to no access to the watermarking system includ-
ing detector output. These attacks are considered in the context
of realistic application scenarios in Section V.

III. REDUCING THE DETECTION SCORE OF A
WATERMARKED SPEECH SIGNAL

While AudioSeal has shown outstanding resilience to com-
mon channel and codec effects, our experiments consider two
approaches not reported in [4]. These approaches are designed
around modifying the watermarked signal, yj such that p < θ
thus rendering the watermark undetectable. In [6], the authors
refer to this approach as “watermark removal” although the
watermark is not removed per se but rather the detection
score is lowered. In the first approach, we assume access to
the watermark generator (Assumption AG) and knowledge of
the encoded message (Assumption AM), i.e. white-box setting
[6]. In the second approach we do not assume access to the
watermark generator or knowledge of the message (while also
not requiring any access to the detector output), i.e. no-box
setting [6].

A. Reducing Detection Score with Generator Access

In [6], the authors pose an optimization problem for the
white-box setting and propose an algorithm to reduce the
detection score through repeated iterations. Given the white-
box setting, we propose a far simpler method that also achieves
the goal of reducing the detection score with similar results
but does not require iteration.
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Fig. 2. For the watermark subtraction method, this plot shows the relation
between average detection scores for different values of α [see in (5)]. Labeled
on each datapoint is the PESQ score of the watermarked speech signal. As
an example, for α = 5 the detection score falls below 0.1 while having little
impact on PESQ.

Assuming generator access (Assumption AG) and knowl-
edge of the encoded message (Assumption AM), we generate
a new watermark

δ′j = G(yj ,mj) (4)

which is an estimate of δj and apply it to the watermarked
signal as in

y′j = yj − αδ′j (5)

where α is a scale factor. The idea is to produce a new
watermark δ′j that is similar to the original watermark δj and
via subtraction, scale out enough of the original watermark
so as to reduce the detection score below the threshold. We
assume mj is known and hence we can generate δ′j as in
(4). The choice of α in (5) should strike a balance between
lowering the detection score of y′j while preserving PESQ,
using s as the reference.

Figure 2 shows detection scores for a range of α (0 to 10
in steps of 0.1) with each data point showing the PESQ value.
As explained in Section II-C, 1600 watermarked signals are
generated and used for this experiment. For each watermarked
signal, at each α, the subtraction attack is carried out and the
attacked watermarked signal is passed through the detector.
The detection scores and PESQ are computed and the average
value is calculated over the 1600 signals. For α = 3, we see
the average detection score falls below 0.5 while not reducing
PESQ (compared to α = 0). Furthermore, for α = 5, we
see the average detection score falls below 0.1 while slightly
reducing PESQ (< 0.3 points when compared to α = 0).
These results suggest if the watermark generator is accessible,
this approach is a very simple and viable attack. The histogram
of detection scores for α = 5 is shown in Figure 3. Although
our approach could be implemented iteratively as in [6] for
possibly better performance, we have shown a non-iterative
approach that can use a fixed value for α (see Figure 3).
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Fig. 3. Histogram of the detection scores for the watermark subtraction
method with α = 5. Compared with Figure 1, this method allows an adversary
to shift the score distribution resulting in lower average detection score.

B. Reducing Detection Score without Generator Access

In [6], the authors pose a different optimization problem for
the black-box setting and investigate the Hop Skip Jump and
Square attacks to solve the problem. For both these attacks,
the optimization is run over 10,000 iterations. We propose a
far simpler method in the no-box setting that in many cases
also achieves the goal of reducing the detection score but
does not require iteration. As we will show in Section V, this
result combined with our results in increasing detection score,
i.e. referred to as “watermark forgery” in [6] is sufficient to
compromise AudioSeal.

We do not assume access to the watermark generator
and view (2) as an additive noise model. With this view,
we apply a common speech enhancement method, audible
noise suppression [12] directly to yj . Figure 4 shows the
histogram of detection scores after speech enhancement on the
1,600 watermarked signals. The watermarked signals used are
generated as explained in Section II-C. Speech enhancement is
done for each of the 1600 watermarked signals used, and the
enhanced watermarked signal is passed through the detector
to obtain the detection scores. With a detection threshold θ =
0.5, approximately 62% of enhanced signals have a watermark
which is no longer detectable.
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Fig. 4. Histogram of detection scores after speech enhancement (audible
noise suppression). With a detection threshold, θ = 0.5, 61.69% of enhanced
signals have a watermark which is no longer detectable.

IV. INCREASING THE DETECTION SCORE OF GENUINE
SPEECH WITH AN UNMATCHED WATERMARK

We now consider applying δj generated as in (1) but to
a speech signal u from a different speaker to generate the
watermarked signal

x = u+ δj . (6)

In the case of (2), we say the watermark is matched to the
speech signal s whereas in (6), the watermark is not matched
to the speech signal u, i.e. unmatched watermark. In this
approach, a watermark could be obtained from various sources
(Assumption AW), i.e. in the wild and imposed on genuine
human speech even though the watermark is generated for a
different speaker. Use of an unmatched watermark obtained
without direct access to the generator has not been previously
considered [6] and is a realistic scenario given that watermarks
generated as in (1) could be made available.

If the unmatched watermark is shorter than the speech
signal, it is repeated to the length of the speech signal, and
for the other way round where the watermark is longer than
the speech signal, the watermark is trimmed to the length of
the speech signal. We consider two experiments where the
watermark is selected randomly from the first portion of the
speech data (as explained in Section II-C) and applied to a
speech signal in the second portion of the speech data. In the
first experiment (Section IV-A), we assume no access to the
detector while creating the unmatched watermarked signals,
while in the second experiment (Section IV-B), we assume
access to the detector output i.e. we can obtain the average
detection score p̄ from the watermarked signal (Assumption
AD).

A. Increasing Detection Score without Detector Access

In the first experiment, we assume no access to the de-
tector, making this scenario similar to the no-box setting in
audiomarkbench [6]. Here, we use the PESQ measure as a
surrogate for the detection score. This assumption is viable
because in the ideal case having the presence of a watermark
(embedded) in the speech signal, the PESQ is highest since
the watermark will be matched to the speech signal. This case
will also have the highest detection score which as we have
shown in Section II-C is close to 1. Extending this to the case
of unmatched watermarking, the more matched the speech
signal and the watermark are, the higher will be the PESQ
and the detection score. Hence, we devise a two stage strategy
for unmatched watermark addition based on this assumption.
In the first stage, we select 10 random watermarks initially.
Then we add each of these 10 unmatched watermarks to the
speech signal under consideration as in (6) and compute the
PESQ in each case. We choose the unmatched watermark
which gives the best PESQ score among these. In the second
stage, for that particular selected unmatched watermark, we
then proceed as follows. For a given PESQ, we scale this
unmatched watermark appropriately and add it to the speech
signal so that the actual PESQ is within ±0.1 of our target
PESQ. 1600 unmatched watermarked signals are created in



this manner. We then determine the detection scores for these
unmatched watermarked signals as a function of PESQ. The
results are shown in Figure 5 where the points indicate the
measured average PESQ values and average detection scores.
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Fig. 5. Average PESQ vs average detection scores for unmatched watermarked
signals.

It is observed that as the scaling factor for watermark
increases, the PESQ score decreases and the detection score
increases. Hence the PESQ and detection scores are inversely
related. This relates to the impact of scaling on watermark
strength for a particular watermark and does not contradict
our assumption of higher PESQ being indicative of better
watermark match to a speech signal and hence higher detection
probability among a selection of unmatched watermarks.

With a given PESQ of 3.4 (tolerance = 0.1), which maintains
perceptual quality, it is possible to increase the detection score
to 0.4 on average without perceptual distortion. The histogram
of the detection scores is shown in Figure 6. We see that the
detection score can be raised beyond the default detection
threshold (θ = 0.5) for 22.38% of the target speakers’
utterances implying that even without having access to the
detector, it is possible to use unmatched watermarked signals
that can increase the false positives of the detector.
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Fig. 6. Histogram of detection scores on selecting an unmatched watermark
from ten randomly-chosen unmatched watermarks based on best PESQ based
match to a speech signal. A target PESQ of 3.4 is used (with tolerance of
0.1). The histogram shows 22.38% of detection scores increase beyond a 0.5
threshold.

B. Increasing Detection Score with Detector Access

In [6], the authors consider “watermark forgery” in order
to increase the detection score and use the same optimization
approach for the watermark removal, black-box case. Given
the black-box setting, we propose a simpler method that in
many cases also achieves the goal of reducing the detection
score but does not require iterative optimization.

In this experiment, 10 random watermarks are selected as
in the aforementioned experiment (Section IV-A) and each
applied to the speech signal. Here, we assume access to the
detector (Assumption AD). For each watermark, scaling is
performed similar as in the second stage of the previous
approach (Section IV-A) so as to match the given PESQ within
a tolerance of ±0.1. The unmatched watermarked signal with
the highest detection score from among the ten signals so
generated is chosen. This process is repeated to generate 1600
unmatched watermarked speech signals. Figure 7 shows the
histogram of detection scores for this set. The results indicate
that detection scores surpass the threshold (θ = 0.5) for
60.06% of the target speakers’ utterances. This demonstrates a
significant increase in false positives by the detector compared
to the previous experiment. Further increasing the detection
scores may be possible by applying a larger number, i.e. more
than 10 of unmatched watermarks to the speech signal and
choosing the signal with the highest detection score.
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Fig. 7. Histogram of detection scores when choosing the watermark with
the highest detection score from among 10 randomly-chosen unmatched
watermarks and combining these with the speech signal to achieve a target
PESQ of 3.4 (with tolerance of 0.1). The histogram shows 60.06% of detection
scores increase beyond the default threshold of 0.5.

V. DISCUSSION

A. General Findings

In Section III, we demonstrated how to decrease the detec-
tion score of the watermarked signal with and without gen-
erator access. As developed in Section III-A, with generator
access (Assumption AG) it is possible to lower the detection
score considerably using a simple subtraction attack, with the
average detection score falling below 0.1. As developed in
Section III-B, without generator access (which is a general ap-
proach) it is possible to lower the detection score considerably
using speech enhancement with audible noise suppression. In



this case, we were able to lower the average detection score
below the 0.5 threshold.

In Section IV, we demonstrated how to increase the detec-
tion score of a speech signal that uses an unmatched watermark
(Assumption AW). As developed in Section IV-A, without
detector access we can obtain detection scores greater than
the 0.5 threshold for about 22.38% of signals. As developed
in Section IV-B, with detector access (Assumption AD) the
proportion increases to 60.06%.

Given the methods we have presented to increase and
decrease detection scores, we consider Figure 8 which shows
overlapping histograms of the approach described in Sec-
tion III-B (which does not assume generator access) and
Section IV-A (which does not assume detector access). This
points to the existence of a practical scenario where the
accurate detection of watermarked/unwatermarked signals is
difficult due to the overlap in the distributions of detection
scores.
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Fig. 8. Histograms of detection scores for the unmatched watermark approach
which increases detection scores and speech enhancement approach which
decreases scores for watermarked signals. The overlapping detection scores
(shown in purple color) illustrate the practical challenges with AudioSeal as
detection can be manipulated.

B. Application Scenarios

Consider now a large social media platform where users
share audio (and/or video) content. The aim would be to
protect users from deep fakes using watermarks while ensur-
ing genuine, human speech is not watermarked. Compliance
would guarantee that generated content contains an embedded
watermark which is easily identified and thus a user would
be provided with a warning that particular content is AI-
generated.

We now need to consider that adversaries are also present
and they may compromise watermarked signals as described
in Section III. We assume a more general method of re-
ducing detection scores without generator access using the
speech enhancement approach from Section III-B. The as-
sumed capability of the adversary is similar to that of the
no-box scenario presented in audiomarkbench [6]. Thus, the
social media platform now also contains compromised wa-
termarks. Furthermore, adversaries may also use unmatched
watermarks on genuine speech using the method described
in Section IV-A, i.e. we do not assume the adversary has

access to the social media platform’s detector. Thus, the
social media platform may contain AI-generated speech with
(undetectable) compromised watermarks and genuine speech
with (detectable) unmatched watermarks thus creating both
false negatives and positives. Finally, we also assume that a
social media platform may also contain non-speech signals
e.g. music, animal sounds, background noise, machine sounds,
etc. We only consider in this scenario our Assumption (AW);
the attacker has access to some unmatched watermarks.

In summary, we consider a social media platform hosting
many types of signals:

A (Unwatermarked) speech signals
B Watermarked speech signals
C Compromised watermarked speech signals
D Unmatched watermarked speech signals
E (Unwatermarked) non-speech signals

We assume that content on the platform is composed of
sets A,B,C,D, and E in various proportions. By defining
these proportions we can now analyze different scenarios
and the tuple S defines the content mix. For example, S =
(0.90, 0.06, 0.2, 0.2, 0.0) describes a scenario where 90% of
content is speech signals, 6% of content is watermarked speech
signals, and the remainder are composed of 2% each of com-
promised watermarked signals and unmatched watermarked
signals, and no non-speech signals.

The usefulness of AudioSeal for a scenario can be evaluated
by analyzing the resulting ROC curve. The balance between
False Positive Rate (FPR) and True Positive Rate (TPR) can
be shown and we can determine the EER as metric of general
usability of the system. The FPR describes how often a
genuine signal is marked as deep fake (i.e. AI generated);
the TPR describes how often a deep fake is identified as such.
While one case may be considered more problematic than the
other, both situations are balanced at the EER.

For each scenario in this section, we use a total of 1600
signals with proportions described by the tuple. Sets A and B
are generated using the TIMIT dataset as described in Section
II-C. Set C is drawn from the set in Section III-B. Set D
is drawn from the set in Section IV-A with the unmatched
watermarked signals generated satisfying a PESQ of 3.4
(tolerance = 0.1). Set E is selected from among non-speech
signal categories available from the freesounds platform [13].

Scenario 1 - Equal Distribution: For the first scenario,
we consider S1 = (0.25, 0.25, 0.25, 0.25, 0.0) where an equal
amount of Sets A, B, C, and D are present. This scenario would
put considerable effort on the adversary as they would have to
generate considerable compromised watermarked signals (Set
C) and unmatched watermarked speech signals (Set D). While
Sets C and D may be easily generated, an adversary may be
limited by the amount of signals that can be uploaded from
one source or the platform may require payment for content
upload and this may pose a constraint. For this scenario, the
ROC curve is shown in Figure 9 and has an EERS1 = 0.188.
In practice, this would mean that when assuming S1, the EER
point would mean that 18.8% of deep fakes are not recognized
or missed and that a user receives an erroneous deep fake
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Fig. 9. Scenario 1 with S1 = (0.25,0.25,0.25,0.25,0.0), i.e. equal proportions
of unwatermarked signals, watermarked signals, compromised watermarked,
and unmatched watermarked signals. With S1, the EER = 18.8% is unaccept-
able.

warning for 18.8% of genuine content. Clearly, this result is
likely unacceptable since many deep fakes are missed and
there are many false alarms.

Scenario 2 - Biased Unwatermarked (Genuine)
Speech: For the second scenario, we consider
S2 = (0.94, 0.02, 0.02, 0.02, 0.0) which may be considered
more realistic. The majority of content (94%) are
unwatermarked speech signals (Set A) while 2% is
watermarked speech signals (Set B). We also consider
2% each, compromised watermarked speech signals (Set
C) and unmatched watermarked signals (Set D). For this
scenario the ROC curve is shown in Figure 10. and has an
EERS2 = 0.016.

While the EER is lower, compared to Scenario 1, it may
still be unacceptable, i.e. one percent of deep fakes are not
recognized and one percent of genuine content is flagged
as a deep fake. The average length of a TikTok video has
a duration of 42.7 seconds [14]. The average TikTok user
spends 58 minutes per day on this platform, consuming 81
standard videos per day. Assuming S2, approximately once
per day a user would be falsely warned about a deep fake
and approximately once per day view a deep fake which they
believe is genuine content. We believe these error rates are not
acceptable, in general.

Scenario 3 - Non-Speech Signals: Finally for the third sce-
nario, we consider S3 = (0.47, 0.02, 0.02, 0.02, 0.47) which
is similar to scenario S2 but instead of assuming 94% un-
watermarked signals we split this evenly into unwatermarked
speech signals (Set A) and non-speech signals (Set E). This
represents a social media platform with both speech content
and non-speech (music or environment sounds) content. For
this scenario, the Receiver Operating Characteristic (ROC)
curve is shown in Figure 11 and has an EERS3 = 0.019.
We observed that inclusion of (unwatermarked) non-speech
signals minorly change the ROC curve from Scenario 2 thus
concerns for Scenario 2 apply to Scenario 3.
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Fig. 10. Scenario 2 with S2 = (0.94,0.02,0.02,0.02,0.0), i.e. higher proportion
of unwatermarked (genuine) speech signals. This is a realistic scenario having
EER=1.6%.
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Fig. 11. Scenario 3 with S3 = (0.47,0.02,0.02,0.02,0.47), i.e. inclusion of
non-speech signals in the content.

VI. RELATED WORK

Previously, watermarking has mainly focused on copyright
protection and Digital Rights Management (DRM) [15]. Audio
watermarking is an established field and focus has been on
imperceptibility and resilience to transformations in the audio
processing chain or by deliberate modifications [16].

Early works were focused on developing watermarks for
image data. Drawing inspiration from spread spectrum tech-
niques used in communication systems, Cox et al. [17], [18]
introduced a spread spectrum based watermarking technique.
The authors demonstrated the viability of this approach on
digital images. Boney et al. [19] developed a temporal and
frequency masking based approach for audio signals, with a
more robust version developed by Swanson et al. [20]. The
spread spectrum based approach to audio signals was devel-
oped by Kirowski et al. [21], [22]. Transform domain audio
watermarking approaches based on Discrete Cosine Transform
(DCT) [23] and Discrete Wavelet Transform (DWT) were
developed [24].



With the increase in computational capabilities, deep learn-
ing based methods came into use for watermarking algorithms
[25]. Kandi et al. [26] developed a Convolutional Neural
Network (CNN) based watermarking scheme for image data.
With the increasing ability of generative AI for realistic fake
speech generation even with limited training data such as
zero shot voice synthesis [27], which could beat anti-spoofing
approaches, watermarking of AI generated speech became
a necessity. Audio watermarking strategies using adversarial
deep learning networks with an embedder/encoder - decoder
type architecture were developed [28]. Such networks work in
an adversarial framework with the encoder attempting to em-
bed imperceptible watermarks and the decoder/detector (adver-
sary) attempting to detect the watermark, with the embedder
working similarly to autoencoders. Liu et al. [29] developed
a framework robust to audio re-recording attacks. Chen et al.
[5] developed wavmark which introduced an invertible neural
network based framework for audio watermarking, bringing
in curriculum based learning and weighted attack handling.
AudioSeal [4], improved upon the existing state of the art
and was the first approach solely focussed on AI speech
watermarking, providing watermark detection at a sample
level.

Recent works have looked at robustness of watermarking
approaches to attack scenarios. Audiomarkbench [6] looks
at attacks in no-box, black-box, and white-box settings. The
authors used human speech data from Librispeech [30] and
the common voice dataset [31] for analysis. O’Reilly et al. [9]
considered a set of transformations including standard signal
processing techniques such as pitch shift and reverberation,
codecs including neural codecs such as DAC (descript audio
codec) and neural vocoders. Lopez et al. [8] and O’Reilly et
al. [9] considered the use of speech enhancement using deep
neural networks for watermark removal. Human speech data
available from DAPS [32] and TIMIT [10] datasets has been
used for the experiments. The robustness of watermarking
approaches to neural codecs has been studied in depth by Ozer
et al. [33].

VII. CONCLUSIONS

In this paper, we have investigated a state-of-the-art wa-
termarking system, AudioSeal. In our investigation, we have
shown two methods which may be used to reduce detection
scores of watermarked signals. The first method requires
access to the watermark generator and simply subtracts an
estimate of the watermark from the watermarked signal. This
results in the average detection score falling well below the
detection threshold while maintaining perceptual quality. The
second method does not require generator access and uses
a common speech enhancement technique. This results in
approximately 62% of watermarked signals no longer being
detectable.

Furthermore, we have shown two methods which may be
used to increase detection scores of unwatermarked signals by
adding an unmatched watermark. The first method does not
require access to the watermark detector and we demonstrate

22.38% of detection scores exceed the detection threshold.
In the second method, which requires access to the detector,
we demonstrate 60% of detection scores exceed the detection
threshold.

The methods presented allow an adversary to decrease
detection scores of watermarked signals or increase detection
scores of unwatermarked signals, causing overlap in the score
distributions making accurate detection difficult. To illustrate
the impracticality of watermarking AI-generated speech using
AudioSeal, we consider a hypothetical application scenario on
a social media platform and found that the performance results
are unacceptable.
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