
Reducing Computation in an i-Vector Speaker Recognition System using a
Tree-Structured Universal Background Model

Richard McClanahana,b,, Phillip De Leonb

aSandia National Laboratories, Albuquerque, NM, USA
bNew Mexico State University, Las Cruces, NM, USA

Abstract

The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived

from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This

is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all

of these systems, the posterior probabilities and sufficient statistics calculations represent a computational

bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-

structured GMM-UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the

number of these calculations. With this tree-structured hash, we can trade-off reduction in computation

with a corresponding degradation of equal error rate (EER). As an example, we reduce this computation

by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when

evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.

Keywords: speaker recognition, clustering methods, tree graphs

1. Introduction

As speaker recognition (SR) systems have be-

come more accurate, there is now a growing vol-

ume of research aimed at reducing computational

complexity and increasing efficiency [1–15]. In gen-

eral, most of this research can be categorized by

computational reduction in either the frame, Gaus-

sian, or utterance layer [1]. Within the frame

layer, the focus is usually on reducing the effec-

tive rate (i.e. frames per second) at which fea-

Email addresses: rmcclan@sandia.gov

(Richard McClanahan), pdeleon@nmsu.edu (Phillip De

Leon)

ture vectors are extracted or passed on for fur-

ther in the processing chain. Within the Gaussian

layer, the focus is usually on reducing the complex-

ity involved in computing the posterior probabil-

ity or probabilistic alignment of each feature vec-

tor given the speaker-dependent Gaussian mixture

model (GMM) and/or the GMM universal back-

ground model (GMM-UBM) which typically con-

tains thousands of component densities. Within the

utterance or speaker layer, the focus is usually on

fast utterance scoring [2] or efficiently compensat-

ing for channel/scoring effects [3].

It is worth noting that the techniques ap-

Preprint submitted to Speech Communication July 24, 2014

plied within the various layers are not mutually

exclusive–that is to say that a system might employ

frame layer techniques, Gaussian layer techniques

as well as utterance layer techniques. In this work

we focus on Gaussian layer techniques as the cal-

culation of sufficient statistics is an operation that

is performed within all recent state-of-the-art sys-

tems employing a GMM-UBM including traditional

log-likelihood scoring systems [16], support vector

machines (SVM) systems [17], joint factor analy-

sis systems (JFA) [18], and more recently i-vector

systems [2]. Further, this calculation of the proba-

bilistic alignment is a recognized bottleneck and as

such worthy of continued research.

1.1. Frame Layer Techniques

It has long been recognized that with GMM-

UBM based SR systems, a reduction in frame rate

reduces the number of feature vectors that must be

aligned for the given GMM. Typically frame rate

reduction is performed at the test stage as opposed

to the training stage, where training times may not

be as important as test times. In [4], McLaughlin et

al. analyzed the effects of three different decimation

approaches: fixed-rate, variable-rate, and adaptive-

rate decimation. In fixed-rate decimation, every

Dth feature vector is retained from the sequence

of vectors. In variable-rate decimation, a difference

threshold between successive feature vectors is com-

puted and only vectors which are sufficiently differ-

ent are retained. In adaptive-rate decimation, only

a fixed number of feature vectors per test utter-

ance are retained. Fixed-rate decimation by up to

a factor of 20× degraded equal-error rate (EER) by

less than 2% (absolute) on the NIST 1998 summer

development evaluation data using a GMM-UBM

system.

In [5], Kinnunen et al. analyzed four differ-

ent pre-quantization (PQ) algorithms: decimation

(as in [4]), random subsampling, averaging, and

clustering-based PQ. In random subsampling, 1-

out-of-D feature vectors is randomly selected and

retained while averaging uses the centroid of D

feature vectors. In clustering-based PQ, feature

vectors are clustered using the Linde-Buzo-Gray

(LBG) algorithm. The centroids of the clusters

are then scored in an initial speaker pruning stage

(which is a speaker layer technique). In clustering-

based PQ, the clustering algorithm itself incurs sub-

stantial computational overhead and for many SR

implementations, this overhead negates any compu-

tational reduction. With a 256 component GMM-

UBM system, the clustering PQ algorithm pro-

duced a 34× speed-up in speaker identification with

a 1.6% absolute degradation in EER on the NIST

1999 speaker recognition evaluation (SRE) corpus.

1.2. Gaussian Layer Techniques

Some of the earliest research focusing on reduc-

ing computation in SR systems was directed at the

Gaussian layer and in particular, investigating the

impact of using GMMs with fewer component den-

sities. In [4], McLaughlin et al. studied the effects

of varying the number of component densities and

was able to achieve a 4× speed up with less than

1% absolute degradation in EER by reducing the

number of components in the GMM-UBM to 512

from 2048.

In [6], Auckenthaler and Mason used Gaussian

selection to reduce the number of component den-

2

sities that each feature vector was aligned against.

This work analyzed three different hash systems.

These hash systems employed a hash GMM–i.e. a

GMM with much fewer components than the UBM,

followed by a limited search of the UBM. Each com-

ponent of the hash GMM had a shortlist of in-

dices to be searched in the otherwise conventional

UBM. Two of the systems trained a smaller hash

GMM using the same training data as used to train

the 1024 component GMM-UBM. In one system,

the shortlist was trained by aligning feature vec-

tors to both the GMM-UBM and the hash GMM

and calculating a histogram of highest scoring pairs.

In the second system, the method for training is

similar to the first except that each UBM compo-

nent was limited to being linked to one component

within the hash. In the third hash system, the au-

thors created a hash model by performing vector-

quantization (VQ) on the GMM-UBM mean vec-

tors. With the hash, this technique yielded a 16×

computational reduction with “no noticeable” per-

formance degradation as compared to their baseline

GMM-UBM system tested with the Odyssey 2001

evaluation data.

Similarly in [7], Xiang and Berger utilized a hi-

erarchical GMM (HGMM) with up to four layers

where each layer represents a GMM with an increas-

ing number of components or increasing resolution.

A tree-structure was formed by applying k-means

clustering within the various layers of the tree.

In scoring, feature vectors are aligned against the

lower resolution GMM, with each component den-

sity linked to multiple component densities in the

next layer consisting of a higher-resolution GMM. A

structural background model (SBM), a HGMM, is

searched by iteratively following the highest-scoring

components and their children in each layer. The

structural GMM for the target speaker is scored us-

ing only the path that is taken in the search down

the SBM. Finally, the SR decision is made using a

neural network that processes scores from different

layers. This technique yielded a 17× computational

reduction with a 5% relative degradation in EER

evaluated with the NIST 1999 SRE.

A different approach, taken by Ye and Mak em-

ploys scalar-quantization (SQ) and discrete densi-

ties for feature vector alignment to the GMM [8].

The elements of the feature vector are each scalar-

quantized to a codeword which is then used to in-

dex a pre-computed discretized probability. The

authors investigated using both a high-density dis-

crete model (HDDM) and a discrete mixture model

(DMM). The HDDM method applied to a GMM-

UBM system yielded a 30× reduction in compu-

tation with a 1.5% absolute degradation in EER

evaluated using NIST 2002 SRE data. In [9], the

work was extended to use subvector quantization of

the feature vectors and achieved up to 25× speedup

with “no significant” degradation in EER.

In our earliest work [10], we presented a hash-

based system similar to [6] but using Runnalls’

Gaussian mixture reduction [19] approach to con-

struct the hash and shortlist. We demonstrated a

2.8× reduction in alignment calculations using a

GMM supervector, support vector machine (SVM)

system [17] without any loss in accuracy on the

NIST 2002 SRE.

3

1.3. Efficient i-Vector Extraction Techniques

SR systems based on i-vectors have recently been

developed and investigated [2] and there is now

a growing number of papers describing methods

for reducing computation involved in i-vector ex-

traction. In [14], Glembek et al. proposed two

methods for simplifying i-vector extraction. The

first simplification assumes GMM component align-

ment, i.e. zeroth-order sufficient statistics, are con-

stant across utterances and that this alignment is

represented by the GMM-UBM component weights.

The second simplification assumes that the i-vector

extraction matrix is linearly transformed such that

its per-Gaussian components are orthogonal. This

assumption of orthogonality allows a simplified in-

verse on the diagonal precision matrix. In [15],

Aronowitz and Barkan extended this work by im-

plementing two other i-vector extraction approxi-

mations assuming GMM counts to be similar across

sessions. This technique yielded a 25× speed up

with minimal degradation in EER evaluated with

NIST 2008 SRE data.

In [20–22], Cumani et al focused on reducing the

memory footprint of fast i-vector extractors. The

authors presented several algorithms including a

variational Bayes approach, a conjugate gradient

approach, and a sub-space factorization method.

Most recently, with their sub-space approach, the

authors achieved dramatic memory reduction while

maintaining fast extraction and little degradation

when evaluated with the NIST 2010 extended core

evaluation.

1.4. Paper Outline

In this paper, we extend the use of Gaussian

mixture reduction reported in [10] and propose a

tree-structured, hash GMM in order to reduce the

computation required for alignment and subsequent

calculation of the sufficient statistics. This novel

method of forming the tree-structured hash GMM

has the important practical advantage in that it can

be incorporated into a system that has already been

trained as it only needs the GMM-UBM itself for

training. Although this approach is applicable to

adapted GMM-UBM SR systems in general, we fo-

cus our attention to reducing computation in state-

of-the-art i-vector SR systems. We believe this to

be one of the first papers to report results from such

a hashing system implemented within an i-vector

SR system. We show that using a tree-structured,

hash GMM, we are able to achieve a large reduc-

tion in computation while incurring a small, relative

degradation in EER.

The remainder of the paper is organized as fol-

lows. In Section 2, we review the development and

implementation of a typical i-vector SR system. In

Section 3, we describe how to utilize Gaussian mix-

ture reduction to train the hash GMM and tree-

structured, hash GMM. In Section 4, we describe

our i-vector system with the tree-structured, hash

GMM and present results in Section 5. Finally, in

Section 7, we conclude the article.

2. Description of i-Vector Speaker Recogni-

tion System

This section reviews the i-vector SR system as

described by Dehak et al. in [2, 23–25] and uti-

4

lized in this research. Figure 1 shows a block di-

agram of the system where the dashed blocks show

the steps involved in system development includ-

ing UBM training, total variability (TV) subspace

training, and probabilistic linear discriminant anal-

ysis (PLDA). The lower processing chain shows the

steps involved in extracting i-vectors for target and

test utterances and scoring the similarity between

the utterances using the various parameters that

were estimated during system development.

2.1. System Development

2.1.1. UBM Training and Sufficent Statistics

Development begins with construction of a

GMM-UBM of non-target speakers’ feature vectors.

The GMM is given by

p(x|λ) =

M∑
c=1

wcpc(x) (1)

where M is the number of components densities and

pc(x) =
1

(2π)d/2|Σc|1/2
exp

(
−1

2
(x− µc)

TΣ−1
c (x− µc)

)
(2)

where d is the dimensionality of feature vector x.

The parameters of the GMM-UBM are collectively

denoted by λUBM = {wc,µc,Σc} indicating the

weight, mean vector, and diagonal covariance ma-

trix respectively.

GMM parameters are estimated using the it-

erative expectation-maximization (EM) algorithm

[26]. The E-step calculates the probabilistic align-

ment for each feature vector

Pr(c|xt, λ) =
wcpc(xt|µc,Σc)

M∑
k=1

wkpk(xt|µk,Σk)

(3)

and the M-step re-estimates the sufficient statistics

ŵc =
1

nt

nt∑
t=1

Pr(c|xt, λ), (4)

µ̂c =

nt∑
t=1

Pr(c|xt, λ)xt

nt∑
t=1

Pr(c|xt, λ)

, (5)

and

Σ̂c =

nt∑
t=1

Pr(c|xt, λ)x2
t

nt∑
t=1

Pr(c|xt, λ)

− µ̂2
c (6)

where nt is the number of training feature vectors.

The algorithm is iterated until a convergence cri-

terion is met, i.e. a maximum number of iterations

is reached or log-likelihood improvement is below a

pre-defined threshold.

Though not explicitly shown in the development

stage, it is necessary to calculate the sufficient

statistics for each training utterance that is used

in TV and PLDA. While PLDA operates upon

i-vectors, these i-vectors must first be extracted

from sufficient statistics and TV parameters. The

zeroth-order and centralized first-order sufficient

statistics for each utterance, u are given by

Nc(u) =

nt∑
t=1

Pr(c|xt, λ) (7)

and

F̃c(u) =

nt∑
t=1

Pr(c|xt, λ)(xt − µc). (8)

2.1.2. Total Variability Training

The second step of development is to use the EM

algorithm [27] to train the TV matrix, T (rank R

and size dM ×R) using the sufficient statistics ex-

tracted from a large number of training utterances;

5

Total
Variability

Length
Norm /

Whitening

UBM
Training

Feature
Extraction

{𝜔𝑐 , 𝝁𝑐 , 𝚺𝑐} 𝑇 {𝝁𝒊𝒗𝒆𝒄𝑾}

PLDA
Parameter
Estimation

{𝚽,𝚿, 𝚺}

Factor
Extraction

Length
Norm /

Whitening

Sufficient
Statistics

Feature
Extraction

Factor
Extraction

Length
Norm /

Whitening

Sufficient
Statistics

Feature
Extraction

PLDA
Scoring

Non-target
Utterances

Target

Test

Decision

Figure 1: Baseline i-vector system including developement phase. The dashed blocks in the top flow represent those steps

necessary for system developement and parameter training. The lower blocks represent the target model and test model

extraction and scoring. The sufficient statistics blocks are shaded to highlight the portion of the processing chain that we are

focusing on for computational reduction using our hashing system.

T models the speaker, session, and channel vari-

abilities.

In the E-step, we estimate the posterior (normal)

distribution, w(u) based on the current estimates

of µ, T, and diagonal covariance matrix Σ. The

UBM covariance is used as an initial estimate of Σ.

Defining the R×R precision matrix P(u) as

P(u) ≡ I + TTΣ−1N(u)T (9)

where N(u) represents the Md×Md diagonal ma-

trix with N1(u)Id×d, · · · , NM (u)Id×d along the di-

agonal, the mean and covariance of w(u) are given

by

E[w(u)] = P−1(u)TTΣ−1F̃(u) (10)

where F̃(u) is the supervector of stacked first order

statistics F̃c(u) for utterance u and

cov(w(u),w(u)) = P−1(u). (11)

In the M-step, we compute

C =
∑
u

F̃(u)E[w(u)] (12)

and

Ac =
∑
u

Nc(u)E[w(u)wT(u)] (13)

where E[w(u)wT(u)] = P−1(u)+E[w(u)]E[w(u)]T

and then update block submatrices of T with

T(i, :) = CiA
−1
c (14)

where i is a vector of indices ranging from (M −

1)d+ 1 to Md.

6

2.1.3. PLDA System Development

In [25], Garcia-Romero demonstrated a simpli-

fied PLDA model that has exceptional performance.

The author made two changes to the original PLDA

algorithm. First, he introduced whitening and

length normalization to the raw i-vectors. The sec-

ond change was to eliminate the within-class vari-

ability matrix and instead assume a full (not diag-

onal) covariance matrix.

In this simplified model, the observed length nor-

malized i-vector wi for the ith speaker is modeled

by

wi = Φhi + εi (15)

where Φ is the basis for the between-class variabil-

ity, hi are the speaker factors for the ith speaker,

and εi is vector of residuals generated from a full

covariance matrix Σ.

2.2. i-Vector Extraction

After system development, i-vectors are ex-

tracted for testing according to the bottom row

of Figure 1 using parameters estimated from sys-

tem development. The uncompensated i-vectors

are computed using (10), repeated here as

w = P−1(u)TTΣ−1F̃(u). (16)

2.3. Decision

Following [25] the log-likelihood ratio, or speaker

comparison score, computed between two i-vectors–

w1 and w2–is

score = wT
1Qw1 + wT

2Qw2 + 2wT
1Pw2 + C (17)

where

Q = Σ−1
tot −

(
Σtot − ΣacΣ−1

totΣac

)−1
(18)

P = Σ−1
totΣac

(
Σtot − ΣacΣ−1

totΣac

)−1
(19)

and where Σtot = ΦΦT + Σ is the i-vector total

covariance matrix, Σac = ΦΦT, and C is a constant.

Equation (17) assumes that the i-vectors have been

previously length normalized and whitened.

3. Forming Tree-Structured GMMs via

Gaussian Mixture Reduction

3.1. Hash System Description

The purpose of our hash system is to reduce

the total number of component densities within the

UBM that each input feature vector is aligned with

as in (3) and reduce the number of components used

in the update of sufficient statistics as in (7) and

(8). Given a feature vector xt, for the vast majority

of components the posterior probability Pr(c|xt, λ)

will be negligible. The hash system is used to ex-

ploit this result by intelligently selecting a subset

of components that will produce a non-negligible

posterior probability. Thus, (3) will only be calcu-

lated for a subset of components determined by the

hash. Further, because the hash exploits the result

that Pr(c|xt, λ) will be negligible for the majority

of components, we can also skip these terms in the

summations in (7) and (8).

In our system, we employ a hash GMM that con-

sists of Mh component densities with each of these

components being linked with one or more com-

ponents in the M component GMM-UBM. Gener-

ally, in order to substantially reduce the number of

computations involved in the alignment, we require

Mh �M where Mh is a free parameter selected by

the developer.

Figure 2 illustrates the principle of using a

hash system. Individual input feature vectors, xt,

7

are initially scored against the component densi-

ties of the hash GMM with model parameters,

λhash = {wh
c ,µ

h
c ,Σ

h
c}, representing component

weight, mean vector, and covariance matrix respec-

tively, where 1 ≤ c ≤ Mh and h denotes hash pa-

rameters. Based on this alignment, a subset of

component densities within the GMM-UBM hav-

ing the model parameters, λUBM = {wc,µc,Σc}

are selected for scoring and adaptation. The map-

ping that links components within the hash GMM

to components in the UBM is referred to as a short-

list mapping.

It should be noted that the hash GMM can be

regarded as a lower resolution version of the UBM

[7]. While the UBM statistically models the distri-

bution of the feature vectors, the hash GMM at-

tempts to model this same statistical distribution

but using fewer components, hence a lower resolu-

tion.

3.2. Hash GMM Construction with Gaussian Mix-

ture Reduction

In [10], we found that in a GMM supervector sup-

port vector machine (SVM) system, a hash GMM-

UBM using Runnalls’ Gaussian mixture reduction

provided least degradation for a given amount of

computational reduction when compared to other

methods used to build the hash such as k-means

clustering or retraining a lower resolution GMM us-

ing the developmental data used to train the UBM.

One benefit of using Gaussian mixture reduction

is that the reduction can be applied to a SR sys-

tem with a pre-existing GMM-UBM. In Gaussian

mixture reduction, we start with an M -component

GMM and progressively reduce the number of com-

𝒙𝑡

𝑷𝒓(𝟏|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝟑|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝟐|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝟒|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝑴 − 𝟑|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝑴 − 𝟏|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝑴 − 𝟐|𝒙𝒕, 𝝀𝑼𝑩𝑴)

𝑷𝒓(𝑴|𝒙𝒕, 𝝀𝑼𝑩𝑴)

GMM-UBM
Component
Alignment

𝑷𝒓(𝟐|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

𝑷𝒓(𝟏|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

𝑷𝒓(𝟑|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

𝑷𝒓(𝑴𝒉 − 𝟐|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

𝑷𝒓(𝑴𝒉|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

𝑷𝒓(𝑴𝒉 − 𝟏|𝒙𝒕, 𝝀𝒉𝒂𝒔𝒉)

Hash GMM
Component
Alignment

Shortlist

Figure 2: Single layer hash GMM system trained using Gaus-

sian mixture reduction [10]. Input feature vectors, xt, are

first aligned to the hash GMM components. A shortlist is

then used to select a subset of UBM components for align-

ment based on the best aligned components within the hash.

ponents until we are left with an Mh-component

GMM.

In [19], Runnalls presented an iterative method

for successively merging a pair of component densi-

ties into a single component density. The criterion

for selecting the pair to merge is based on mini-

mizing the symmetric Kullback-Leibler (KL) diver-

gence between the pre-merged GMM and the result-

ing post-merged GMM. Although a closed-form so-

lution does not exist for calculating the symmetric

KL divergence between two GMMs, [19] presents an

upper bound on the divergence between pre-merged

and post-merged GMMs and it is this upper bound

that the component selection minimizes.

In the Gaussian mixture reduction method, the

following two steps are iterated M −Mh times:

8

Step 1: Calculate the upper bound of the symmet-

ric KL divergence between the pre-merged GMM

and the post-merged GMM [19],

U(i, j) ≤1

2
[(wi + wj) log det (Σij)

−wi log det (Σi)− wj log det (Σj)] (20)

for every pair of components i and j within the pre-

merged GMM, where Σij is calculated as shown

below in Step 2.

Step 2: Choose the pair of components with in-

dices i and j that minimize (20) and replace with

the moment-preserving component density with pa-

rameters

wij = wi + wj

µij = wi|ijµi + wj|ijµj (21)

Σij = wi|ijΣi + wj|ijΣj

+ wi|ijwj|ij (µi − µj) (µi − µj)
T

where wi|ij = wi/(wi + wj) and wj|ij = wj/(wi +

wj).

Figure 3 depicts this iterative Gaussian mixture

reduction process for a univariate GMM. Starting

with a univariate GMM with five components, pairs

of components are iteratively merged resulting in a

GMM with one fewer component after each itera-

tion. At each iteration of the merging process, a

record is kept of which components are merged and

later used as the shortlist between the hash GMM

and the components of the GMM-UBM.

As was noted in [19], the method chooses a pair

of component densities for merging based on the

following characteristics:

Figure 3: Demonstration of Gaussian mixture reduction with

a five component, univariate GMM. At each iteration, two

components (shaded) are merged until only one component

remains.

1. Small weights, wi and wj

2. Mean vectors close to each other with respect

to their variances captured by the calculation

of Σij

3. Similar covariance matrices, Σi ≈ Σj .

In the SR test stage, each input feature vector

is aligned with the Mh components of the hash

GMM. After identifying the B best-aligned compo-

nents within the hash, the shortlist is used to select

clusters or groups of components within the GMM-

UBM and the input feature vector is then aligned

with those GMM-UBM components. If B = Mh

then all the components within the UBM will be

used for scoring. If B � Mh, only a small subset

of components within the UBM will be identified

for alignment resulting in an overall computational

reduction.

9

With a single-layer hash system, the upper bound

of processing reduction is a factor of
√
M/2 as-

suming uniformly-distributed cluster sizes. This

upper bound is determined as follows. Assum-

ing a uniformly-distributed mapping of GMM-

UBM components to hash GMM components, we

would perform Mh alignment calculations within

the hash system and (BM)/Mh alignment calcula-

tions within the GMM-UBM. If we set “B = 1”–

the value that minimizes the number of alignment

calculations–then the total number of calculations

is Mh + M/Mh which is minimized when Mh =
√
M . In this case, the total number of alignment

calculations in the hashing system would be 2
√
M .

Thus the reduction is M/(2
√
M) or simply

√
M/2.

While we could reduce the number of alignment

calculations within the UBM by choosing a larger

hash model (more components on the left side of

Fig. 2), the effect is to increase the number of com-

ponents in the hash for scoring because the hash

itself is large. Likewise, choosing a hash model with

very few components would result in a larger num-

ber of UBM components that are selected for align-

ment. As such, within a single layer hash system,

the best-case reduction can be achieved when the

number of components of the hash GMM is equal

to the number of UBM components that each hash

component maps to.

3.3. Tree-Structured Hash GMM

We can extend the proposed hash system by

applying Gaussian mixture reduction to a multi-

layered tree-structured system as depicted in Fig. 4

to obtain an even greater reduction in the number of

alignment calculations. Each layer of the tree struc-

GMM
Hash

GMM
Hash

GMM
Hash

GMM
Hash

GMM
Hash

GMM
Hash

GMM
Hash

GMM
Hash

UBM
Components

Shortlist
Best Scoring

Path

Layer 1

Layer 2

Layer 3

𝒙𝒕

Figure 4: Tree-structured hash GMM system with each layer

trained using Gaussian mixture reduction on the components

of the higher resolution GMMs

ture consists of hash GMMs representing progres-

sively higher resolution models of the underlying

GMM-UBM. As depicted in the figure, the UBM

components are generally not uniformly-distributed

among the hash components and thus the tree

structure is not balanced along each branch. This

non-uniformity occurs because the Gaussian mix-

ture reduction algorithm does not attempt to en-

force uniform clustering of component densities. As

a consequence, within the different layers, some

hash GMMs may be linked to other hash GMMs,

to UBM components, or to a mixture of the two.

When aligning input feature vectors with the

tree-structure, each input feature vector is aligned

with the lowest resolution hash GMM (shown as

Layer 1 in Fig. 4). Within each layer, each hash

GMM will be linked with Mh other hash GMMs

or UBM components via a shortlist. Of the Mh

possible paths, we will choose B < Mh by select-

ing those that maximize the probabilistic alignment

of the feature vector with the components of the

particular hash GMM that is being traversed. We

continue this process through each layer until all

branches have been traversed. In Fig. 4, we depict

10

the case with Mh = 3, B = 1, and number of lay-

ers, L = 3. Note that with B = 1, we only follow a

single path through each layer of the tree until we

reach the final layer at which point the hash may

point to multiple UBM components (as depicted

with the dashed line in Fig. 4).

The recursive tree forming algorithm, which is

performed once in the SR development, is presented

in Algorithm 1. The algorithm is recursively called

until L layers have been created. Essentially, the al-

gorithm is applying Gaussian mixture reduction at

different layers within the tree. First, a single pass

of Gaussian mixture reduction is applied to the en-

tire set of M UBM component densities resulting

in a Mh component hash GMM. Each of these hash

components is mapped to components within the

UBM. Gaussian mixture reduction is then applied

to each of these clusters of components resulting

in Mh more hash GMMs each of which consists of

Mh components. This algorithm is applied recur-

sively until the desired number of layers has been

achieved or there are no longer enough components

within the individual clusters to complete Gaussian

reduction.

We can calculate an upper bound on the com-

putational reduction offered by the tree-structured

hash by recognizing that ideally, each hash GMM

has two components with each linked to two compo-

nents of a higher resolution hash, i.e. a binary tree.

In this case, the number of layers would be log2(M)

resulting in 2 log2(M) alignment calculations. As

such, the maximum reduction in the computation

of alignment calculations would be M/[2 log2(M)].

As in the case of the single layer system, train-

ing the tree-layered hash is an operation that can

Algorithm 1: Recursive Tree Training Algo-

rithm
Input: GMM components {wi,µi,Σi} passed

in from upper layer (or UBM

components for top layer), Mh, and

remaining number of layers LR

Output: multi-layered GMM tree structure

Perform Runnalls’ Gaussian mixture reduction

as using {wi,µi,Σi} creating a smaller hash

GMM with Mh components ;

if LR = 0 (last layer) then

return GMM clusters from current layer ;

else

LR = LR − 1 ;

for 1 ≤ cluster (node) ≤Mh do
if Number of components associated

with current node and layer is less than

Mh then

Continue to next node ;

else
Call Recursive Tree Training

Algorithm with {wk,µk,Σk}, Mh,

and LR where k indicates

components associated with current

node and layer ;

end

end

end

11

occur after a typical i-vector system has been de-

veloped. Further, because of this coupling to the

baseline UBM system, it is possible to insert it into

the system or remove it at any time. It would also

be possible to change the structure of the hash tree

on-the-fly which would be useful in situations where

the number of verification requests increases quickly

and the SR system is required to process rapidly.

4. Experiments

4.1. System Description and Development

Our reference SR system is based on the i-vector

approach as described in Section 2. Referring to

Figure 1, 60-dimensional feature vectors are ex-

tracted as follows. We extract 19 mel-frequency

cepstral coefficients (MFCCs) using a 25 ms Ham-

ming window with 10 ms advance and append the

log-energy. The ∆ and ∆∆ of these features are

then computed. Feature warping is applied to the

feature vector using a 3 s window after vectors

corresponding to silence have been removed. We

construct a single gender-independent GMM-UBM

with 1024 components and with diagonal covariance

matrices. A single gender-independent i-vector ex-

tractor consisting of TV matrix of rank 400 is used.

It should be re-iterated that the entire set of param-

eters for the GMM-UBM, TV matrix, and PLDA

were estimated without the use of the hashing sys-

tem.

Speech signals from several different corpora,

were used in system development as shown in Table

1. In our SR system, we did not attempt to prevent

overlap in training utterances between different sys-

tem blocks nor did we attempt to limit our data to

a particular channel type such as telephone.

Table 1: Corpora used in system development and training.

UBM TV PLDA

Switchboard II,

Phase 1 and 3

X X

Switchboard Cellu-

lar, Part 2

X X X

Fisher English Part

1 and 2

X X

NIST 2004 SRE X X X

NIST 2005 SRE X X X

NIST 2006 SRE X X X

NIST 2008 SRE X

4.2. Evaluation

Experiments were performed using the NIST

2010 SRE data [28]. In particular, we focused on

condition 5 of the extended core evaluation (tel-tel).

Performance was evaluated using the EER. Results

for our baseline i-vector SR system are given in Ta-

ble 2 which shows a pooled 2.90% EER (2.91% EER

for male and 2.92% EER for female) without score

normalization.

Table 2: Baseline results of the i-vector speaker recognition

system for NIST 2010 SRE extended-core condition 5.

Pooled Males Females

EER 2.90% 2.91% 2.92%

We believe our system without the hash GMM

provided adequate baseline results for our research.

12

4.3. Evaluation of i-Vector SR System with Tree-

Structured UBM

In our experiments, we measure the effect that a

tree-structured UBM has on EER and the resulting

computational reduction of sufficient statistics. In

the tree-structured UBM, we vary the number of

components for each hash GMM Mh, the number of

layers L, and the number of best performing paths

B that are traversed as described in Section 3.3. A

total of 36 different configurations were evaluated

but we only present a sampling of the configurations

as shown in Table 3.

We evaluate the reduction of sufficient statis-

tics computations by determining the number of

alignment calculations performed with the tree-

structured UBM versus with the standard UBM.

We measure the computational reduction as

R =
M

Meff
(22)

where Meff is the total number of alignment calcu-

lations in (7) that are performed in both the cal-

culations within the tree and the subset of original

UBM components that are selected from the hash.

Using Figure 4 as an example, following the single

best path denoted by the green dashed line, Meff

would account for the alignment calculations asso-

ciated with the three hash GMMs in three layers

as well as the three UBM components. This is a

conservative metric because while we account for

reduction in alignment calculations in our reported

reduction, we do not account for the even greater

reduction in the calculation of the first-order statis-

tics in (8). For each feature vector xt, we no longer

calculate F̃c(u) for every value of c but rather for

only a subset identified by the hash system.

While our primary metric for evaluating our sys-

tem is that given in (22), we also compute the speed

up in CPU time. This speed up is calculated by di-

viding the total amount of time required to calcu-

late the sufficient statistics using the given hashing

configuration by the total amount of time required

using the traditional GMM system.

Within the i-vector SR system–as shown in Fig-

ure 1–there are four primary blocks: test segment

feature extraction, sufficient statistics calculation,

i-vector extraction, and PLDA scoring. Within our

baseline system, we have found that feature extrac-

tion, sufficient statistics calculation, and i-vector

extraction each require about a third of the total

test stage time while PLDA scoring is negligible in

comparison. The results that we report for compu-

tational reduction and speed up are strictly for this

sufficient statistics calculation not the end-to-end

total system.

5. Results

The results for our system vary as a factor of

the computational reduction. This reduction factor

is determined by logging all of the likelihood cal-

culations performed within the tree structure and

comparing this to the baseline of 1024 likelihood

calculations. Figure 5 shows the EER as a func-

tion of computational reduction (reduction in align-

ment calculations) for pooled male and female trials

based on 36 different hashing configurations. The

general trend is that greater reductions in compu-

tational complexity come at the expense of greater

EER.

Table 3 illustrates results from various configura-

13

Table 3: Results of i-vector system with tree-structured

hash GMMs for pooled male/female speakers evaluated with

NIST 2010 core-ext condition 5 tel-tel for a sampling of con-

figurations. The bottom row with (L = 1, Mh = 32, B = 1)

demonstrates an example single layer configuration. In ad-

dition to the computational reduction R× we also present

the actual measured speed up as measured in the reduction

in CPU time.

L Mh B EER (%) R (×)

Speed

Up (×)

Hash

(MB)

Baseline 2.90 1.00 1 0.99

10 2 1 6.33 45.32 8.8 2.00

4 5 1 5.11 44.47 17.3 1.39

3 8 1 4.73 38.69 20.9 1.50

2 16 2 3.21 15.32 16.3 1.25

2 16 1 4.38 27.86 24.5 1.25

2 12 2 3.20 14.54 14.3 1.14

2 12 1 4.55 31.17 24.0 1.14

2 10 1 4.63 32.44 23.6 1.10

2 8 1 4.51 29.33 21.5 1.06

1 32 1 4.07 15.24 21.5 1.02

10 20 30 40
3

3.5

4

4.5

5

5.5

6

Computational Reduction Factor

E
qu

al
 E

rr
or

 R
at

e
[%

]

(2,16,2)

(4,5,1)

Figure 5: EER as a function of computational reduction for

an i-vector system with tree-structured hash GMMs eval-

uated with NIST 2010 core-ext condition 5 using pooled

male/female results. The green squares depict the results

for the configurations listed in Table 3 and other configu-

rations not in Table 3 are depicted by the red circles. The

results for the two configurations (L = 2, Mh = 16, B = 2)

and (L = 4, Mh = 5, B = 1) are indicated with the arrows.

tions of number of layers L, number of components

per hash Mh, and number of best scoring paths B

that are traversed and the resulting EER and com-

putational reduction. For a computational reduc-

tion by a factor greater than 44× (L = 4, Mh = 5,

B = 1), absolute EER increases from 2.90% to

5.11%–a 76% relative degradation. Depending on

the application, such an increase in EER for the

given computational reduction may or may not be

acceptable.

For more modest computational reductions,

degradations to EER can be reduced. For exam-

ple as shown in Table 3, using a tree-structure hash

UBM with parameters (L,N,B) = (2, 16, 2) we can

achieve a factor of 15× computational reduction

while incurring a relative degradation in EER of

10%–which corresponds to increasing the absolute

14

EER from 2.9% to 3.21%.

Though not shown in the table, configurations

with B ≥ 3 were evaluated. While these configura-

tions incurred the least degradation, none of these

configurations were able to achieve at least an order

of magnitude reduction in computation.

In analyzing the results in Table 3, the first thing

to note is that computation reductions of up to 15×

are relatively easy with a number of different con-

figurations with little EER degradation. Above this

level of computational reduction, EER degradation

increases quickly. Results show that we are able

to achieve greater computational reduction with an

increased number of layers in the tree up to the the-

oretical limit of log2(M) layers–with the maximum

reduction occurring when we have 10 layers (for a

1024 component density GMM-UBM).

From the results, it appears that an acceptable

configuration consists of a balanced approach be-

tween large hash GMMs (Mh large) and a large

number of layers (L large). With a single layer sys-

tem (L = 1) and with Mh = 32, the maximum

computational reduction is 15× with 40% relative

degradation in EER. At the other extreme with 10

layers and Mh = 2, a reduction by 45× is possi-

ble with a near doubling in EER. Better results are

achieved when the configurations are more balanced

such as (L,Mh) equal to (4, 5) or (3, 8) which bal-

ance the number of components selected within the

UBM with the number of components in the hash

system.

It should be noted that these results are not com-

petitive with those presented in Section 1.3 but

rather complimentary to them. For example, a

system could implement a hashing system for suf-

ficient statistics extraction followed by one of the

techniques in Section 1.3.

6. Remarks on Memory

While the two metrics we focus on for this re-

search are the EER and computational reduction, it

is worthwhile commenting on the memory footprint

of the baseline GMM-UBM and the hash GMMs.

If all GMM components are represented as double

precision floating point numbers, the GMM-UBM–

consisting of mean vectors, covariance matrices and

component weights–will require 8M(2d + 1) bytes

of memory–0.99 MB for M = 1024 and d = 60. Ta-

ble 3 gives the size of the hash GMM in megabytes

(MB) for the various configurations. This num-

ber represents the storage requirement for both the

hash GMM plus the components of the UBM. Thus,

the hash typically requires an additional several

kilo-bytes of storage. While this increase in size

may seem large, in reality compared to the size of

the TV matrix which can require tens or hundreds

of MB, storage requirements for the hash are rela-

tively small.

7. Conclusion

Incorporation of a tree-structured hash GMM

into an i-vector framework for speaker recognition

was proposed and analyzed in this study. Within

a vast majority of speaker recognition systems

currently in use–including GMM, SVM supervec-

tor, joint factor analysis, and i-vector systems–

calculation of sufficient statistics and statistical

model adaptation require substantial computa-

tional resources. We have shown that it is possi-

15

ble to significantly reduce this computation through

the use of a tree-structured hash UBM. With this

approach, we can achieve a factor of greater than

15× reduction in probabilistic alignment (poste-

rior probability) calculations within the sufficient

statistics calculation stage while incurring a rela-

tive degradation of approximately 10% (or 0.3%

absolute). Further gains by as much as a factor

of approximately 44 can be achieved but incurring

a relative degradation of about 76% (2.21% abso-

lute).

Further, the method presented uses Gaussian

mixture reduction to construct a tree-structured

hash using only the GMM UBM itself and thus

can be constructed post development of the i-vector

system. As the hash is compatible with the exist-

ing UBM system, it would be possible to switch in

and out various hashing configurations on-the-fly as

computational loads vary within the overall system.

References

[1] A. Chan, J. Sherwani, R. Mosur, A. Rudnicky, Four-

layer categorization scheme of fast GMM computation

techniques in large vocabulary continuous speech recog-

nition systems, in: Proc. Int. Conf. Spoken Language

Process. (ICSLP), 2004, pp. 289–292.

[2] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouel-

let, P. Dumouchel, Support vector machines versus fast

scoring in the low-dimensional total variability space for

speaker verification, in: Proc. Int. Speech Commun. As-

sociation (Interspeech), 2009, pp. 1559–1562.

[3] T. Kinnunen, E. Karpov, P. Fränti, Efficient online

cohort selection method for speaker verification, in:

Proc. Int. Conf. Spoken Language Process. (ICSLP),

Vol. 3, 2004, pp. 2401–2402.

[4] J. McLaughlin, D. A. Reynolds, T. P. Gleason, A study

of computation speed-ups of the GMM-UBM speaker

recognition system, in: Proc. European Conf. Speech

Communication and Technology (Eurospeech), 1999,

pp. 1215–1218.

[5] T. Kinnunen, E. Karpov, P. Franti, Real-time speaker

identification and verification, IEEE Trans. Audio,

Speech, and Language Process. 14 (1) (2006) 277–288.

[6] R. Auckenthaler, J. S. Mason, Gaussian selection

applied to text-independent speaker verification, in:

Proc. IEEE Speaker and Language Recognition Work-

shop (Odyssey), 2001, pp. 83–88.

[7] B. Xiang, T. Berger, Efficient text-independent speaker

verification with structural gaussian mixture models

and neural network, IEEE Trans. Speech and Audio

Process. 11 (5) (2003) 447 – 456.

[8] G. Ye, B. Mak, M. Mak, Fast GMM computation for

speaker verification using scalar quantization and dis-

crete densities, in: Proc. Int. Speech Commun. Associ-

ation (Interspeech), 2009, pp. 2327–2330.

[9] G. Ye, B. Mak, The use of subvector quantization

and discrete densities for fast GMM computation for

speaker verification, in: Proc. Int. Speech Commun. As-

sociation (Interspeech), 2010, pp. 1481–1484.

[10] R. D. McClanahan, P. L. De Leon, Mixture com-

ponent clustering for efficient speaker verification, in:

Proc. Int. Speech Commun. Association (Interspeech),

2012.

[11] H. R. S. Mohammadi, R. Saeidi, Efficient implemen-

tation of gmm based speaker verification using sorted

gaussian mixture model, Proc. European Signal Pro-

cessing Conf. (EUSIPCO) (2006) 4–8.

[12] R. Saeidi, T. Kinnunen, H. Sadegh Mohammadi,

R. Rodman, P. Fränti, Joint frame and gaussian se-

lection for text independent speaker verification, in:

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.

(ICASSP), 2010, pp. 4530–4533.

[13] B. Tydlitát, J. Navratil, J. Pelecanos, G. Ramaswamy,

Text-independent speaker verification in embedded en-

vironments, in: Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP), Vol. 4, 2007, pp. 293–296.

[14] O. Glembek, L. Burget, P. Matejka, M. Karafiát,

P. Kenny, Simplification and optimization of i-vector

extraction, in: Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP), 2011, pp. 4516–4519.

[15] H. Aronowitz, O. Barkan, Efficient approximated i-

16

vector extraction, in: Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), 2012, pp. 4789–

4792.

[16] D. A. Reynolds, T. F. Quatieri, R. B. Dunn, Speaker

verification using adapted gaussian mixture models, in:

Digital Signal Processing, 2000, p. 2000.

[17] W. M. Campbell, D. E. Sturim, D. A. Reynolds,

Support vector machines using GMM supervectors for

speaker verification, IEEE Signal Proc. Letters 13 (5)

(2006) 308 – 311.

[18] P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel,

Joint factor analysis versus eigenchannels in speaker

recognition, Audio, Speech, and Language Processing,

IEEE Transactions on 15 (4) (2007) 1435–1447.

[19] A. Runnalls, Kullback-leibler approach to gaussian mix-

ture reduction, IEEE Trans. Aerosp. Electron. Syst

43 (3) (2007) 989 –999.

[20] S. Cumani, P. Laface, Memory and computation trade-

offs for efficient i-vector extraction, IEEE Trans. Audio,

Speech, and Language Process. 21 (5) (2013) 934–944.

[21] S. Cumani, P. Laface, Fast and memory effective

i-vector extraction using a factorized subspace, in:

Proc. Int. Speech Commun. Association (Interspeech),

2013.

[22] S. Cumani, P. Laface, Factorized sub-space estimation

for fast and memory effective i-vector extraction, Audio,

Speech, and Language Processing, IEEE/ACM Trans-

actions on 22 (1) (2014) 248–259.

[23] N. Dehak, R. Dehak, J. Glass, D. Reynolds, P. Kenny,

Cosine similarity scoring without score normalization

techniques, in: Proc. IEEE Speaker and Language

Recognition Workshop (Odyssey), 2010.

[24] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, P. Ouel-

let, Front-end factor analysis for speaker verification,

IEEE Trans. Audio, Speech, and Language Process.

19 (4) (2011) 788–798.

[25] D. Garcia-Romero, C. Y. Espy-Wilson, Analysis of i-

vector length normalization in speaker recognition sys-

tems., in: INTERSPEECH, 2011, pp. 249–252.

[26] D. Reynolds, Gaussian mixture models, in: Encyclope-

dia of Biometrics, Springer, 2009.

[27] P. Kenny, G. Boulianne, P. Dumouchel, Eigen-

voice modeling with sparse training data, IEEE

Trans. Speech and Audio Process. 13 (3) (2005) 345

– 354.

[28] A. F. Martin, C. S. Greenberg, The nist 2010 speaker

recognition evaluation., in: INTERSPEECH, 2010, pp.

2726–2729.

17

	Introduction
	Frame Layer Techniques
	Gaussian Layer Techniques
	Efficient i-Vector Extraction Techniques
	Paper Outline

	Description of i-Vector Speaker Recognition System
	System Development
	UBM Training and Sufficent Statistics
	Total Variability Training
	PLDA System Development

	i-Vector Extraction
	Decision

	Forming Tree-Structured GMMs via Gaussian Mixture Reduction
	Hash System Description
	Hash GMM Construction with Gaussian Mixture Reduction
	Tree-Structured Hash GMM

	Experiments
	System Description and Development
	Evaluation
	Evaluation of i-Vector SR System with Tree-Structured UBM

	Results
	Remarks on Memory
	Conclusion

