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Abstract

Among the various proposed score normalizations, T- and Z-norm are most widely used in speaker verification systems. The main
idea in these normalizations is to reduce the variations in impostor scores in order to improve accuracy. These normalizations require
selection of a set of cohort models or utterances in order to estimate the impostor score distribution. In this paper we investigate
basing this selection on recently-proposed speaker model clusters (SMCs). We evaluate this approach using the NTIMIT and
NIST-2002 corpora and compare against T- and Z-norm which use other cohort selection methods. We also propose three new
normalization techniques, ∆-, ∆T- and TC-norm, which also use SMCs to estimate the normalization parameters. Our results show
that we can lower the equal error rate and minimum decision cost function with fewer cohort models using SMC-based score
normalization approaches.
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1. Introduction

The objective in speaker verification (SV) is to accept or
reject a claim of identity based on a voice sample (Reynolds,
1995a). During the training stage, speaker-dependent feature
vectors are extracted from the training speech signal and used
to build a statistical model λs through MAP-adaptation of a
Gaussian mixture model-universal background model (GMM-
UBM) (Reynolds et al., 2000). Each feature vector consists
of mel-frequency cepstral coefficients (MFCCs). The speaker
model λs is parameterized by the set {wi,µi,Σi} where wi are
the weights, µi are the mean vectors, and Σi are the (diagonal)
covariance matrices of the GMM. During the test stage, the se-
quence of feature vectors X is extracted from a test signal and
a log-likelihood ratio Λ(X) is computed by scoring the test fea-
ture vectors against the claimant model, λc and the UBM, λUBM

Λ(X) = log p(X|λc) − log p(X|λUBM). (1)

The claimant speaker is accepted if

Λ(X) ≥ θ (2)

or else rejected, where θ is decision threshold (Bimbot et al.,
2004).

Large variance in the distributions of both claimant and im-
postor scores has been observed (Li and Porter, 1988). To re-
duce this variance, Li and Porter (1988) proposed impostor score
distribution normalization. The basic idea is to use a normal-
ized version of (2) where the normalization is

Λ̃(X) =
Λ(X) − αc

βc
(3)

and αc, βc are the estimated mean, standard deviation respec-
tively, of the distribution of impostor log-likelihood scores for
λc. Among the various normalization techniques, Zero-normalization
(Z-norm) and Test-normalization (T-norm) are the most widely
used methods to estimate the normalization parameters, αc and
βc.

In Z-norm, during the training stage a set of impostor ut-
terances is scored against each potential claimant model. The
resulting impostor score distribution is used to estimate the nor-
malization parameters in (3). Since the estimation is done at
the training stage, there is no additional test-stage computa-
tion aside from (3), which is seen as an advantage for Z-norm
(Auckenthaler et al., 2000). Generally all the available impostor
utterances are used in estimating the Z-norm parameters (Auck-
enthaler et al., 2000).

In T-norm, during the test stage the test utterance is scored
against a pre-selected set of cohort models (pre-selection is based
on the claimant model). The resulting score distribution is then
used to estimate the normalization parameters in (3). The ad-
vantage of T-norm over Z-norm is that any acoustic or ses-
sion mismatch between test and impostor utterances is reduced.
However, the disadvantage of T-norm is the additional test-stage
computation in scoring the cohort models (Auckenthaler et al.,
2000).

As shown in Fig. 1(a) for the NIST-2002 corpus, we observe
considerable overlap among both the impostor and claimant
score distributions thus resulting in verification errors and higher
EER (Auckenthaler et al., 2000). Using score normalization
methods, the impostor score distribution can normalized to zero
mean and unit variance. As shown in Fig. 1(b), we observe that
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the T-norm reduces the overlap among the distributions result-
ing in fewer verification errors and lower EER.
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Figure 1: Approximate impostor and claimant score distributions from NIST-
2002 speech corpus. With no score normalization (a), distributions overlap
resulting in verification errors. With T-normalization (b), the overlap is reduced
leading to fewer verification errors.

In (Sturim and Reynolds, 2005), speaker adaptive cohort
selection for T-norm (known as AT-norm) was proposed based
on a city-block distance. Given a claimant model λc, R im-
postor utterances, and Q T-norm models, impostor utterances
are scored against each claimant model in the system and also
against the Q T-norm models. Then city-block distance is used
to select the L nearest T-norm models as the cohorts for the
given claimant model. Prior to AT-norm (Sturim and Reynolds,
2005), cohorts for T-norm were selected based on some broad
speaker-specific information, such as the speaker’s gender or
handset used (Auckenthaler et al., 2000).

Similar to AT-norm, Ramos-Castro et al. (2007) used an ap-
proximation of Kullback-Leibler (KL) divergence for the dis-
tance measure and called it KL-T-norm. The KL divergence

between each speaker model and Q T-norm models is com-
puted and the L nearest models are chosen. Experiments were
performed on NIST-2005 corpus and showed that KL-T-norm
outperformed T-norm, with a cohort size of 75. However, no
comparisons were made to AT-norm.

From the literature review, there appears to be only lim-
ited research in selection of impostor utterances for Z-norm
and cohort models for T-norm. In this paper, we propose the
use of speaker model clusters (SMCs) as a general technique
to assist with these selection problems in score normalization
(Apsingekar and DeLeon, 2009), (Ravulakollu et al., 2008).
The main contributions of this paper are two-fold. First, we
present a unified approach which uses SMCs in selecting a sub-
set of impostor utterances for Z-norm and selecting cohort mod-
els for T-norm. This approach can be extended to other simi-
lar normalization techniques such as H-norm, C-norm, and D-
norm (Bimbot et al., 2004). Furthermore, with SMC-based T-
norm, we can reduce computation resulting in a speed-up of
the verification. Second, we propose three new normalization
techniques, ∆-, ∆T- and test-cluster (TC) norm, all of which
use SMCs for estimating the normalization parameters. When
compared with existing methods, the proposed SMC-based nor-
malizations can lower the equal error rate (EER) and minimum
decision cost function (DCF).

This paper is organized as follows. In Section 2, we de-
scribe speaker model clustering and in Section 3, we describe
the selection of cohort models for T-norm and impostor utter-
ances for Z-norm using SMCs. In Sections 4 and 5, we de-
scribe the three new normalization techniques. In Section 6, we
describe the experimental evaluation and provide results using
both NTIMIT and NIST-2002 corpora. In Section 7, we provide
analysis and discussion of the results and conclude the article
in Section 8.

2. Speaker Model Clustering

In prior research, we proposed SMCs in order to speed-up
the test stage in speaker identification (SI). In this section, we
first summarize the work in (Apsingekar and DeLeon, 2009)
before discussing application to SV score normalization.

We begin by representing the speaker model simply as a
single point determined by the weighted mean vector (WMV)

µ̄ =

W∑
i=1

wiµi. (4)

where W is the number of component densities in the GMM.
From (4), one can conveniently define the centroid of a cluster
of GMM speaker models as

r =
1
K

K∑
k=1

µ̄k (5)

where µ̄k is the WMV for λk and K is the number of speaker
models in the cluster.

Next, we identify the speaker model λCR
n , which is nearest

to each cluster centroid

λCR
n = arg min

1≤s≤S

[(
µ̄s − rn

)T (
µ̄s − rn

)]1/2
, 1 ≤ n ≤ N (6)
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where N is the total number of clusters and S is the number of
speakers. This speaker model is called the “cluster representa-
tive” (CR) and the space of SMCs, speaker models, centroids,
and CRs is illustrated in Fig. 2.
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Figure 2: Space of speaker model clusters, cohort (speaker) models, cluster cen-
troids and representatives. The SMCs facilitate a grouping of speaker models
which can aid in efficient speaker identification and speaker verification score
normalization.

Finally, we cluster speaker models using the k-means algo-
rithm where the distance measure is based on an approximation
to KL divergence

d(λs, λ
CR
n ) ≈

1
M

M∑
m=1

log p(xtrain
s,m |λs) −

1
M

M∑
m=1

log p(xtrain
s,m |λ

CR
n )

(7)
where M is the number of training feature vectors and xtrain

s,m are
the feature vectors from speaker s. The algorithm for speaker
model clustering is given in Algorithm 1 (Apsingekar and DeLeon,
2009).

Algorithm 1 Speaker model clustering using KL divergence
1: Initialize cluster representatives, λCR

n , 1 ≤ n ≤ N using
randomly-chosen speaker models where N is the desired
number of clusters

2: Compute distance using (7) from λs to λCR
n , 1 ≤ s ≤ S

3: Assign each λs to the cluster with the minimum distance
4: Compute new cluster centroids using (5) and determine λCR

n
using (6)

5: Goto step 2 and terminate when cluster membership does
not change.

In the original application of SMCs for speeding-up the test
stage in SI, we first select the cluster whose log-likelihood,
measured against λCR

n , is highest

Cn = arg max
1≤n≤N

 M′∑
m=1

log p(xs,m|λ
CR
n )

 , (8)

where xs,m is the test feature vector of speaker s and M′ is the
number of test feature vectors. Then the test utterance is scored
against speaker models belonging to the selected cluster in or-
der to make the identification. To increase SI accuracy, rather

than selecting a single cluster, we use a subset of available
clusters ranked according to (8). By using 20% of the SMCs,
we were able to speed-up the SI test-stage using the TIMIT,
NTIMIT, and NIST-2002 corpora by a factor of 5× with no loss
in accuracy compared to a full search (Apsingekar and DeLeon,
2009).

3. Score Normalization using Speaker Model Clusters

We require impostor utterances to estimate the Z-norm pa-
rameters and cohort models to estimate the T-norm parame-
ters. In both normalizations, cohort models are first built for
each available impostor utterance and clustered along with the
claimant models to form SMCs using Algorithm 1.

3.1. SMC-Based T-norm

In T-norm, the task is to select L cohort models which are
nearest to the given claimant model yet diverse from each other
(Reynolds, 1995b). By selecting cohort models from the same
SMC as that of the claimant we are guaranteed to select mod-
els nearest to the claimant model [according to (7)]. There
are three possibilities in the selection process: the number of
speaker models in the claimant’s cluster (excluding the claimant
model) is equal to, less than, or greater than L. If the number
of available models in the selected cluster is equal to L, then all
intra-cluster models are used as the cohort models.

If the number of speaker models in the selected cluster is
less than L, then the nearest clusters according to (7) (KL di-
vergence between the CRs) are merged until the number of
available models, Q is greater than or equal to L. If the num-
ber of speaker models, Q is greater than L, then the cohort
models are selected according to Algorithm 2 which is simi-
lar to the algorithm used for selecting background cohort set
in (Reynolds, 1995b). Cohort models selected according Al-
gorithm 2 are nearest to the claimant in that cluster and max-
imally spread from each other (Reynolds, 1995b). Sturim and
Reynolds (2005) suggested that cohort models closest to the
claimant would yield lower EER than randomly selected ones.
In our research, we used cohort models consisting of speaker
models other than the claimant to estimate the T-norm parame-
ters.

3.2. SMC-Based Z-norm

In Z-norm, we normally use all the available impostor ut-
terances in estimating the normalization parameters (Aucken-
thaler et al., 2000). Using SMCs, however, we may estimate
the parameters using a significantly smaller subset of impostor
utterances. In our proposed SMC-based Z-norm, the impostor
utterances associated with cohort models selected using SMCs
(Algorithm 2) are used for parameter estimation. We note that
the cohort models used in obtaining impostor utterances for Z-
norm could be different than the cohort models for T-norm. In
our research, we used the training utterances of speakers other
than the claimant as impostor utterances to estimate the Z-norm
parameters.
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Algorithm 2 T-norm cohort model selection for claimant
1: Initialize the set of required cohort models L to null set

and the set of speakers chosen from merged SMCs to be Q
2: Move the closest speaker model according to (7) (between

the claimant model and all the speakers in Q) from Q to
L , L′ = 1

3: Move speaker model λq from Q to L , where λq is found
by

λq = arg max
λq∈Q

 1
L′

∑
l∈L

d(λl, λq)
d(λc, λq)

 , L′ ← L′ + 1

(where λc is the claimant model)
4: Repeat step (3) until L′ = L

4. Normalization through SMC-Based Score Offset

In the previous section, we proposed how to use SMCs to
select impostor utterances (Z-norm) and cohort models (T-norm)
in order to determine the normalization parameters in (3). We
can also use SMCs to offset or bias the log-likelihood score
in order to further separate overlapping claimant and impostor
score distributions.

4.1. ∆-Normalization
We begin by clustering all speaker models in the system

as described in Section 2. Once the test utterance is acquired,
clusters are scored and ranked according to (8). If the claimant
speaker model is a member of the highest scoring cluster C [ac-
cording to (8)], we add an offset ∆ > 0 to the log-likelihood
score in (1) otherwise we subtract an offset

Λ̃∆(X) =

{
Λ(X) + ∆, λc ∈ C
Λ(X) − ∆, λc < C. (9)

The addition or subtraction of the offset serves to further sep-
arate overlapping claimant and impostor score distributions as
shown in Fig. 3(a). We can extend this idea to include not just
the highest scoring cluster but rather a set of the highest-scoring
clusters. Since there is the possibility that the set of highest-
scoring clusters does not contain the true claimant or does con-
tain the impostor model and X is from an impostor, the value of
∆ is limited and found through experiment.

4.2. ∆T-Normalization
We can combine the proposed ∆-norm with SMC-based T-

norm, resulting in ∆T-norm

Λ̃∆T(X) =


Λ(X) + ∆ − αc

βc
, λc ∈ C

Λ(X) − ∆ − αc

βc
, λc < C.

(10)

where the definitions of αc and βc are same as that for conven-
tional T-norm, i.e. using all available speakers as cohorts. ∆ is
not used in calculating the normalization parameters αc and βc.
∆T-norm can mitigate the effects of impostor and true claimant

being in the same cluster since the SMC-based T-norm param-
eters are estimated from the cohort models chosen within the
cluster. If the impostor and claimant are in the same cluster,
then this impostor would also be a member of the cohort mod-
els for the claimant, thus reducing the final score in (10). Thus
∆T-norm can further reduce the overlap between the score dis-
tributions as shown in Fig. 3(b) and reduce the EER.
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Figure 3: Approximate impostor and claimant score distributions from NIST-
2002 speech corpus.With (a) ∆- and (b) ∆T score normalizations, the overlap is
further reduced over no score normalization and T-norm [see Fig. 1] leading to
fewer verification errors.

5. Test-Cluster Normalization

The last proposed score normalization technique utilizing
SMCs is called “Test Cluster (TC)” normalization. We begin
by clustering all speaker models in the system as described
in Section 2. Once the test utterance is acquired, clusters are
scored and ranked according to (8). The speaker models within
the highest scoring clusters serve as cohort models for estimat-
ing the TC-norm parameters αc and βc. Should the claimant
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speaker model may be a member of the highest scoring cluster,
it is not used as a cohort model. In TC-norm, cohort models
are chosen in the test-stage using the test utterance. This is dif-
ferent than the T-norms (AT-norm, KLT-norm, and SMC-based
T-norm) where cohort models are chosen in the training stage.

As discussed earlier, the advantage of T-norm over Z-norm
is that acoustical mismatch between the testing and training ut-
terances can be eliminated (Auckenthaler et al., 2000). How-
ever, this acoustical mismatch is not completely eliminated in
T-norm because the cohort models are chosen during training.
However, with TC-norm, any acoustical mismatch between co-
hort models and test utterance can be further reduced as com-
pared to T-norm.

6. Experiments and Results

Speaker verification experiments using the proposed SMC-
based score normalization techniques have been performed us-
ing the NTIMIT and NIST-2002 corpora. Our baseline SV sys-
tem uses an energy-based voice activity detector to first remove
silence. Feature vectors composed of 20 MFCCs for NTIMIT
and 15 MFCCs, 15 delta MFCCs, log-energy, and delta log-
energy for NIST-2002 are extracted every 10 ms using a 25 ms
hamming window. Cepstral mean subtraction (CMS) and rela-
tive spectra (RASTA) processing are applied. For experiments
with the NIST-2002 corpus, we also apply feature warping.

For the NTIMIT corpus, a 1024 component UBM was built
using all the available training feature vectors. The individual
speaker models are then MAP-adapted (only the mean vectors)
from the GMM-UBM. The NIST-2002 corpus consists of 330
speakers (139 male and 191 female) in the single speaker de-
tection cellular task. We have separated the NIST-2002 corpus
into two groups consisting of 2/3 and 1/3 of the speakers in the
corpus 1. The second group (last 1/3rd speakers of NIST-2002
corpus, consisting of 45 male and 65 female) are used to build
a gender dependent, 1024 component GMM-UBM and these
separated speakers are used as the cohort speakers in all the
experiments. The speakers in the first group (first 2/3 speak-
ers of NIST-2002 corpus, consisting of 94 male and 126 fe-
male speakers), individual speaker models are MAP-adapted
(only the mean vectors) from the gender specific GMM-UBMs.
The test utterances and claimant models from the second group,
with which the UBM was built, are not used in calculating EER.
Finally, we use 100 speaker model clusters with NTIMIT and
10 speaker model clusters with NIST-2002 corpus (Apsingekar
and DeLeon, 2009). In experiments where we select a subset of
clusters, we specify this as a percentage of the total number of
clusters.

For the NTIMIT corpus, our baseline EER (no score nor-
malization) is 3.64% and for the NIST-2002 corpus, our base-
line EER (no score normalization) is 11.02%. Our NIST-2002

1By splitting NIST-2002 into two sets, we avoid using impostor data to train
background models. The correct protocol is to use a different corpus to train
the background models and T-norm models. Thus our results with NIST-2002
cannot be directly compared with other research which follows the protocol.

baseline EER is lower than the 12.10% published in (Long-
worth and Gales, 2009) due to fewer test speakers used in sys-
tem evaluation, however, our system design closely matches
that described in (Longworth and Gales, 2009). We note that
other researchers (Ramaswamy et al., 2003), (Zhang and Mak,
2009) and (David and Leeuwen, 2005) have reported lower EERs
with NIST-2002 with different variations on the GMM-UBM
system in (Longworth and Gales, 2009). For this work, we use
the system and baseline results as recently reported in (Long-
worth and Gales, 2009) as our benchmark.

In addition to the EER, the minimum DCF is also calculated
to evaluate the performance of the proposed system. DCF is
defined in (Reynolds, 2003) as

DCF = 0.1 × Pr(Miss) + 0.99 × Pr(False alarm). (11)

For the NTIMIT corpus, our baseline minimum DCF (no score
normalization) is 1.82×10−2 and for the NIST-2002 corpus, our
baseline minimum DCF (no score normalization) is 9.82×10−2.

6.1. Z-norm
For Z-norm experiments, we compared the performance of

SMC-based Z-norm from Section 3.2 against the conventional
Z-norm. By conventional Z-norm we mean that all available
impostor utterances (629 on NTIMIT and 45 male/65 female
for NIST-2002) are utilized for estimating the Z-norm param-
eters. Using the conventional Z-norm, for the NTIMIT, NIST-
2002 corpus our system has an EER of 3.54%, 10.92% respec-
tively. For the NTIMIT, NIST-2002 corpus, the minimum DCF
is 2.55 × 10−2, 9.03 × 10−2 respectively.

Our first set of experiments measure the EERs while vary-
ing the number of impostor utterances selected using SMCs.
The results are shown in Tables 1 and 2 and we find that with
as few as 20 impostor utterances, SMC-based Z-norm nearly
matches the performance of conventional Z-norm which used
all available impostor utterances. In addition, for the NTIMIT,
NIST-2002 corpus the minimum DCF for SMC-based Z-norm
(20, 20 impostor utterances) is 2.44× 10−2, 8.84× 10−2 respec-
tively.

Table 1: Speaker model cluster based Z-norm using the NTIMIT corpus. EER
for conventional Z-norm (using all 629 impostor utterances) is 3.54% while
SMC-based Z-norm can use as few as 20 impostor utterances with equivalent
performance.

Number of NTIMIT
Impostor Utterances (3.54%)

20 3.51%
40 3.55%
60 3.55%

6.2. T-norm
For T-norm experiments, we compared the performance of

SMC-based T-norm from Section 3.1 against AT-norm while
varying the cohort size. First we note that when using con-
ventional T-norm (all the available speakers as cohorts to es-
timate the T-normalization parameters), the EERs are 2.96%,
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Table 2: Speaker model cluster based Z-norm using the NIST-2002 corpus.
EER for conventional Z-norm (using all 45 male/65 female impostor utter-
ances) is 10.92% while SMC-based Z-norm can use as few as 20 impostor
utterances with equivalent performance.

Number Impostor EER
Utterances (10.92%)

10 11.02%
20 10.98%
30 11.02%

8.10% for NTIMIT, NIST-2002 respectively. This is not gen-
erally used due to the significant computation required at the
test stage, hence the proposed variations on T-norm to select a
subset for cohorts, e.g. AT-norm, KL-T-norm. In Tables 3 and
4, columns 2 and 3 provide the EER results for various cohort
sizes using the NTIMIT and NIST-2002 corpora. We find that
SMC-based T-norm outperforms AT-norm for all fixed cohort
sizes.

Table 3: Comparison of AT-norm, SMC-based T-norm, and ∆T-norm using
the NTIMIT. For a fixed cohort size, SMC-based T-norm has lower EER than
AT-norm which in turn has lower EER than the baseline system (no score nor-
malization) of 3.64%. ∆T-norm improves upon SMC-based T-norm resulting
in even lower EER for fixed cohort sizes.

Cohort Size EER EER EER ∆T-Norm
Size AT-norm SMC T-norm (∆=3.0, 20% of Clusters)

20 3.33% 3.29% 3.28%
40 3.35% 3.10% 3.00%
60 3.17% 3.04% 2.97%

Table 4: Comparison of AT-norm, SMC-based T-norm, and ∆T-norm using the
NIST-2002. For a fixed cohort size, SMC-based T-norm has lower EER than
AT-norm which in turn has lower EER than the baseline system (no score nor-
malization) of 11.02%. ∆T-norm improves upon SMC-based T-norm resulting
in even lower EER for fixed cohort sizes.

Cohort Size EER EER EER ∆T-norm
AT-norm SMC T-norm (∆=1.5, 20% of Clusters)

10 10.98% 9.81% 9.50%
20 10.05% 9.45% 9.13%
30 9.95% 8.99% 8.50%

For the NTIMIT corpus, we measure EER of 3.17% for
AT-norm and 3.04% for SMC-based T-norm with 60 cohorts.
This is an improvement over the baseline (no score normal-
ization) result of 3.64%. For the NIST-2002 corpus, we mea-
sure EER of 9.95% for AT-norm and 8.99% for SMC-based T-
norm with 30 cohorts. This is an improvement over the baseline
(no score normalization) result of 11.02%. Using SMC-based
cohort selection allows fewer cohorts for fixed EER than AT-
norm. For fixed cohort size SMC-based score normalization
produced lower EER than AT-norm. As T-norm is performed
during test stage, scoring with fewer cohort models for each
speaker translates into a computational advantage. Increasing
the cohort size beyond 80 speakers on NTIMIT and 40 speakers
on NIST-2002, SMC-based and AT-norm based score normal-
ization technique produce similar limiting results. In addition,
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Figure 4: ∆-normalized EER with varying offset, ∆ for different percentages
of highest-scoring speaker model clusters used in the set C in (9). For the
NTIMIT corpus (a), the baseline (no score normalization) EER is 3.64% and
can be lowered with ∆-norm to 3.45% while for the NIST-2002 corpus (b),
the baseline EER is 11.02% and can be lowered with ∆-norm to 10.50%. The
baseline results are equivalent to ∆ = 0.

for the NTIMIT corpus the minimum DCF for AT-norm (60 co-
horts) is 1.80 × 10−2 while SMC-based T-norm (60 cohorts) is
1.75×10−2; for NIST-2002 the minimum DCF for AT-norm (30
cohorts) is 9.40 × 10−2 while SMC-based T-norm (30 cohorts)
is 8.72 × 10−2.

6.3. ∆- and ∆T-norm

We evaluated the performance of the proposed ∆-norm from
Section 4.1. The effect of ∆-norm on EER with varying ∆ and
percentage of highest-scoring clusters used in the selection pro-
cess is shown in Fig. 4. We see that the choice of 20% of the
SMCs and ∆ = 3.0, 1.5 for NTIMIT, NIST-2002 respectively
achieved the best results. With these choices we have an EER
of 3.45%, 10.45% for NTIMIT, NIST-2002 respectively for ∆-
norm. This is only slightly better than the baseline (no score
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normalization) EERs of 3.64% (NTIMIT) and 11.02% (NIST-
2002) or equivalently, with ∆ = 0. In addition, the minimum
DCF for ∆-norm is 1.82×10−2, 9.82×10−2 for NTIMIT, NIST-
2002 respectively which is the same as the baseline.

From SMC-based SI results on NTIMIT and NIST-2002
(Apsingekar and DeLeon, 2009), it was found that when search-
ing 20% of clusters, there was no loss in accuracy compared to
a full search. In other words, the true speaker of the test utter-
ance is one among the speakers from highest scoring 20% of the
clusters. In SV, the only change to that of SI is the knowledge
of the claimant. If the claimed identity of the test utterance is
a true claimant, then speakers within the subset of highest scor-
ing clusters are likely to contain the claimant. This is utilized
by adding ∆, assuming the test utterance is truly coming from
the claimant. If the claimant is not contained in the selected
SMCs, then the test utterance might have been produced by an
impostor and so subtracting ∆ would result in lower EER.

On the other hand, the test utterance might be from an im-
postor present in the selected SMCs or the true claimant speaker
might not be contained in selected SMCs (equivalent to miss-ID
in SI). Thus the percentage of clusters to search and the value
of ∆ are set experimentally. However, our research has found
that selecting 20%–30% of the SMCs and 1 ≤ ∆ ≤ 4 produce
results better than baseline (see Fig. 4).

We also evaluated the performance of the proposed ∆T-
norm from Section 4.2. Table 3, column 4 provides the NTIMIT
results. For a cohort size of 60, ∆T-norm has an EER of 2.97%
which is lower than the baseline (no score normalization) EER
of 3.64% and AT-normalized EER of 3.17%. Table 4, column
4 provides the NIST-2002 results. For a cohort size of 30, ∆T-
norm has an EER of 8.50% which is lower than the baseline (no
score normalization) EER of 11.02% and AT-normalized EER
of 9.95%. We find that of the family of T-norms, ∆T-norm has
the lowest EER for fixed cohort size. In addition, the minimum
DCF for ∆T-norm (60, 30 cohorts) is 1.75 × 10−2, 8.59 × 10−2

for NTIMIT, NIST-2002 corpus respectively.

6.4. TC-norm
For the last proposed score normalization, we evaluated the

performance of the TC-norm from Section 5 while varying the
percentage of highest-scoring SMCs used in the selection pro-
cess. Table 5, column 2 provides the results for the NTIMIT
corpus where we see that using 30% of the clusters results in
EER of 2.94% which is lower than the baseline EER of 3.64%.
In Table 5, column 3 are the results for the NIST-2002 corpus
where we also see that using 30% of the clusters results in an
EER of 7.99% which is significantly lower than the baseline
(no score normalization) EER of 11.02%. The TC-norm EER
results are, in fact, better than all other score-normalized EERs.

We note that the way the cohort models are determined in T-
norm and TC-norm are very different possibly explaining better
performance for 30% of clusters than 20%. In T-norm cohort
models are selected during the training stage, however the test
utterance is scored against the cohort models during testing. In
TC-norm, cohort models are selected during the test stage, thus
T-norm is claimant model dependent and TC-norm is test utter-
ance dependent. Thus the percentage of clusters to search may
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Figure 5: DET plots for (a) NTIMIT and (b) NIST-2002 corpus using all
the proposed normalization techniques. SMC-based T-norm outperforms AT-
norm, while both techniques perform better than the baseline (no normaliza-
tion). Among the family of T-norms proposed, SMC-based ∆T-norm has the
lowest EER compared to SMC-based T-norm and AT-norm. TC-norm has the
lowest EER among all the normalization techniques proposed.

Table 5: Performance of proposed TC-norm on NTIMIT and NIST-2002 cor-
pus. Using 30% of the clusters on NTIMIT and NIST-2002 corpus, results in an
EER of 2.94%, 7.99%, which is significantly lower than the baseline (no score
normalization) EER of 3.64 and 11.02% respectively.

% of Selected EER EER
Clusters NTIMIT NIST-2002

10 3.30% 9.13%
20 3.10% 8.40%
30 2.94% 7.99%
40 2.98% 8.25%
50 2.96% 8.25%
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be different from ∆T-norm and TC-norm. Finally, the minimum
DCF for TC-norm is 1.75×10−2, 8.32×10−2 for NTIMIT, NIST-
2002 corpus respectively.

The DET curves for all the proposed normalizations are
shown in Fig. 5. On both the NTIMIT and NIST-2002 cor-
pora, AT-norm performs better than the baseline (no nomaliza-
tion). SMC-based T-norm generally performed better than the
AT-norm, however at low false alarm probabilities on NTIMIT,
AT-norm is slightly better than the SMC-based T-norm. Among
the family of T-norms proposed, ∆T-norm has the better perfor-
mance on the entire operating range. The performance of TC-
norm is the best among all the proposed techniques with EERs
as low as 2.92% and 7.99% on NTIMIT and NIST-2002 corpora
respectively.

7. Analysis and Discussion

Score normalization techniques improve performance of SV
systems by transforming claimant and imposter score distribu-
tions in order to better match the assumed normal score dis-
tributions. Distributions which are more normal lead to better
estimates of the normalization parameters in (3). The Jarque-
Bera (JB) goodness-of-fit test, measures departure from the nor-
mal distribution and is based on sample kurtosis and skewness
(Judge et al., 1988). Table 6 gives the JB test statistics for
null hypothesis rejection (scores are normally-distributed) at a
5% significance for the various score normalizations presented
in this research. We see that all score normalization methods
improve the goodness-of-fit to the normal distribution as com-
pared to when no score normalization method is used. The pro-
posed SMC-based normalizations result in score distributions
with the higher JB test statistics indicating a better match the
assumed normality of the distributions.

Table 6: Jarque-Bera test statistics for normality of score distributions at 5%
significance. Results were generated using 629 NTIMIT, 45/65 Male/Female
NIST-2002 cohorts for conventional T-norm and 60 NTIMIT, 30 NIST-2002
cohorts for AT-norm and SMC-based norms.

Conventional AT-norm SMC SMC
T-Norm T-norm TC-norm

NTIMIT 92.89% 92.3% 94.81% 93.37%
NIST-2002 90.54% 95.55% 95.64% 96.91%

8. Conclusions

Score normalization transforms the log-likelihood ratio score
in order to minimize score variability and is an important com-
ponent in any SV system. In our previous work, speaker model
clusters (SMCs) were used in order to speed-up the SI test stage.
In this paper, we extend the use of SMCs for score normaliza-
tion. SMCs allow us to select fewer impostor utterances for
Z-norm and fewer cohort models for T-norm as compared to
standard versions of these normalization techniques while si-
multaneously having lower EERs and minimum DCFs. In ad-
dition, we also introduced three new score normalizations—∆,

∆T-norm and Test-Cluster (TC) normalization which also uti-
lize SMCs. With the TC-norm, we were able to reduce the base-
line (no score normalization) EER from 3.64% to 2.94% for the
NTIMIT corpus and from 11.02% to 7.99% for the NIST-2002
corpus.
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