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Abstract—Event identification is one among numerous
applications being researched for PMU data. This application
is intended to increase visualization of power system events,
as well as for protection and control, including verification of
relay operation to detect any misoperations. This paper uses data
from field as well as from simulation to test a large variety of
features using two well-known classifiers on a common dataset to
find the most suitable features for disturbance data recorded by
PMUs. The approach also uses data from only one PMU instead
of data from multiple PMUs used by researchers so far, thus
significantly reducing the data to be processed. It is shown that
simple observation-based features capturing shape and statistics
of disturbance waveforms work better than some well-known
features derived from domain transformations. Classification
accuracy and speed achieved with these features are shown to
be satisfactory and suitable for the intended applications.

Index Terms—Classification, feature extraction, phasor mea-
surement unit, power system disturbance

I. INTRODUCTION

As Phase Measurement Units (PMUs) proliferate through-
out power systems, researchers have begun to investigate
automatic methods for the detection and identification of
disturbance events using PMU data in an effort to increase
visualization of power systems [1]–[3]. It is expected that near
real-time detection and identification of disturbances will be
used for power system protection and control [4]. The current
state of the art of protection and control applications can
benefit from detection of relay misoperations, a problem that
has remained elusive to engineers.

Misoperation is a term that indicates that a relay has
operated when there was no fault in its operating zone. Certain
misoperations have historically occurred due to defective relay
components which have also been called hidden faults [5].
In addition there are many instances where a misoperation
due to a hidden fault either initiated or contributed to system
instability, resulting in a blackout [5], [6]. Another type of
misoperation that routinely occurs during early stages of a
blackout is load encroachment, where a distance relay mis-
interprets overload as a system fault. With modern relays the
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hidden fault may also manifest as a cyber attack, where the
intruder can misoperate a relay at a time calculated to result
in instability. In light of these issues, event detection and
identification using PMU data can play an important role in
verifying a relay operation. If a relay operated, but no fault
was detected by the event identification tool, this operation
can be flagged as misoperation.

Previous research work elaborates this idea to outline the
concept of supervisory protection, where event identification
using PMU data can form a supervisory layer that veri-
fies every relay operation, and informs the operators if a
misoperation is detected [6]. Depending on the state of the
system (moderately or heavily loaded), a judicious response
can be initiated, either manual or automated. This application,
however, requires speed - the faster the detection, the better the
chances of successful countermeasures. All papers describing
visualization of system events using PMU data, extract patterns
from disturbance files generated by multiple PMUs and use a
classifier to map the files to a disturbance event [1]–[3], [7].
However, this requires waiting for the disturbance files to be
generated, which are typically 3 min long [8], before even
starting the process. In addition, the most commonly used
feature extraction technique has been Minimum Volume En-
closing Ellipsoid (MVEE), which relies on the measurements
from all PMUs reporting to a Phasor Data Concentrator (PDC)
to formulate an ellipsoid [2]. Properties of the ellipsoid such
as volume, major and minor axes, rate of change of volume are
taken as the features of the data. Classification of the distur-
bance event is then based on feature vectors built from these
features. Although effective, this method is computationally
intensive, and ignores the spatial correlation between data
recorded by different PMUs for a particular disturbance. It
is intuitive that the nature of a disturbance pattern in different
PMU measurements for the same disturbance would be the
same, although the strength of the pattern may vary depending
on the vicinity of a particular PMU from the location of the
disturbance.

This discussion brings out the need for the following
improvements in the application of event identification using
PMU data:

1) The need to accelerate the process - instead of waiting



for PMUs to generate disturbance files, place the event
detection mechanism inside PDC, and start the classifi-
cation process right after an event is detected by PDC.

2) The need to reduce dimensionality of data - implement
a method within PDC that can identify the strongest
disturbance signal.

3) The need to develop signal features and classification
methods that quickly and accurately identify the distur-
bance from a single PMU-data and requires only a small
length of disturbance data.

Obviously accuracy and speed are the two most important
metrics to evaluate the classifier for this application.

In this paper we describe a method to identify the strongest
signal, called the Strongest Signal Selection (SSS). Then, we
investigate signal features with complexity lower than that
of MVEE in order to identify the type of disturbance. The
features under consideration are based on
• classical methods such as the Discrete Fourier Transform

(DFT), Discrete Wavelet Transform (DWT), and Principal
Component Analysis (PCA),

• time-frequency transforms such as the S-Transform (ST),
where the mother wavelet is replaced by a Gaussian win-
dow and a phase term, as well as a new Hilbert Spectrum
which decomposes signals into AM-FM components,

• shapelets that capture the most significant part of the raw
waveform,

• deterministic and statistical features in the data such as
slope, variance, etc.

We consider the K Nearest Neighbor (KNN) and Support
Vector Machine (SVM) classifiers to classify these features
because of the former’s simplicity and low test-stage compu-
tational cost [9] and the latter’s superior performance in our
previous study [6].

In this paper, we focus on fault and generation loss events—
the two most significant disturbance events. The bulk of the
PMU data required in this study is generated by dynamic
simulation of the Western Area Coordinating Council (WECC)
system in the USA using General Electric’s Positive Sequence
Load Flow (PSLF) software. We also have actual field data.
Since field data are limited, we use simulation data for training
the classifiers and then both simulation and actual PMU data
(separately) for evaluation.

II. IDENTIFICATION OF STRONGEST SIGNAL

The input data arrives from multiple PMUs to the PDC
in real time. PMUs have built in thresholds for voltage and
frequency to detect disturbances [8], which can also be easily
implemented in PDC to detect a disturbance-trigger. These
PMU data are then fed to the SSS module. This module first
preprocesses the signals to remove bad data [8], and uses the
processed signal to identify the disturbance data stream with
the highest strength. Although PMUs record multiple variables
such as voltage phasors, current phasors, frequency and rate
of change of frequency, we have shown in [8] that the voltage
magnitude and frequency data carry sufficient information for

event recognition. We use the voltage magnitude alone to find
out the strongest signal and the associated PMU.

Let Vi(n) and fi(n) denote the measured voltage magnitude
and frequency signals recorded by the ith PMU at the nth

sample index. Also suppose that an event is triggered at n0.
The positive and negative deviations of the voltage signal,

n samples after triggering, for the ith PMU, are calculated
according to (1) and (2) respectively, which define the positive,
∆+
i (n) and negative, ∆−i (n) deviations of the nth sample after

the triggering point from the base voltage V rms
i of the ith

PMU:

∆+
i (n)=

{
Vi(n0 + n)−V rms

i , if Vi(n0 + n)≥V rms
i

0, else
(1)

∆−i (n)=

{
V rms
i −Vi(n0 + n), if Vi(n0 + n)<V rms

i

0. else
(2)

V rms
i is calculated as the averaged rms value of the measured

voltage magnitude by the ith PMU, over the ten samples
prior to n0. Ten cycles are generally used in measurement
aggregation for power signal analysis [10].

Thus, V rms
i is defined as

V rms
i =

1

10

√√√√ n0−1∑
n=n0−10

Vi(n)2. (3)

A new metric based on energy deviation, referred to as Cu-
mulative deviation in Energy (CE), is defined for quantifying
the strength of the signal recorded by a PMU. The CE for the
ith PMU, m samples after triggering is expressed as:

γi(m) =

m−1∑
k=0

[
∆+
i (n+ k)

]2
+

m−1∑
k=0

[
∆−i (n+ k)

]2
(4)

From experimental verification, we observed that a value of
m=15 was found to be sufficient to detect the strongest signal.
Even at 30 frames per second (fps) used by older PMUs, this
amounts to 0.5 s.

III. FEATURE EXTRACTION TECHNIQUES

Though many feature extraction methods exist in literature,
there is no qualitative approach to determine which method
will work the best for a given dataset. In this paper, we applied
a number of existing classical feature extraction techniques.
We also designed several new features based on the waveform
statistics and the waveform shapes. The features were extracted
from voltage waveforms and frequency waveforms. Before
extracting the features, we clipped the waveforms to only
include samples 0.5 s before the triggering point and 1.5 s
after (and including) the triggering point. This is because most
critical changes in disturbance waveforms are captured by
this window. This can be verified by the sample disturbance
waveforms shown later in Section IV in Fig. 1. We describe
the feature extraction methods in the following subsections.



A. Classical Methods

1) Discrete Fourier Transform: The well-known DFT [11]
converts time-domain data to the frequency-domain through
an expansion into a basis of complex exponentials

X(k) =
1

N

N−1∑
n=0

x(n)e−j2πkn/N (5)

where X(k) are the DFT coefficients.
Signal features can be extracted directly from the DFT

coefficients or their magnitudes. The major limitation of DFT
is its inability for multi-resolution analysis, and thus it cannot
capture temporal variation of a time series.

2) Discrete Wavelet Transform: The DWT decomposes
time-domain data into multiple levels of resolution through the
use of basis functions derived from a mother wavelet [12]. The
resulting DWT coefficients can also serve as signal features.
The choice of the mother wavelet is a critical factor in deciding
the performance of DWT and is often chosen with a goal
of obtaining a sparse representation, i.e. the least number of
non-zero DWT coefficients. The data can be visualized from
a different resolution at each level of the decomposition, thus
capturing temporal variations.

3) Fast variant of discrete S transform features: Fast variant
of discrete S transform (FDST) is a linear time-frequency
transform which is an extension from the wavelet class of
algorithms, with specific merits such as fast computation,
absolute phase reference and Fourier basis modeling [13].
The FDST is capable of segregating a disturbance waveform
in terms of oscillatory modes which correspond to a range
of Fourier frequencies. The frequency domain expression for
FDST of a time-series Vi of length m samples is expressed
as:

Si,k =


1

m

m−1∑
k′=0

V̄k′W̄(k′−i),ke
j2πkk′/m , if k′ = k

and V̄k′ ≥ α
0 Otherwise.

(6)

The meaning of each component in this equation is explained
as follows. First, i= 0, 1, · · · , (m− 1) denote the index of the
original sample And k = 0, 1, · · · ,m/2 denote the index of the
sample in the frequency domain. Second, V̄k′ is the DFT of
Vi Third, W̄k′,k is a discretized frequency domain normalized
Gaussian window function which is expressed as:

W̄k′,k = e−
1
2 (

2πk′
k )2 , k′ = 0, 1, · · · , (m− 1) (7)

The parameter α is a threshold, whose value is zero in our
analysis to preserve all the frequency components.

Six features that gave superior performance were selected
through trials. The features quantified in various ways the
time-frequency resolution (TFR) energy and dominant oscil-
latory modes. Since results documented in Section IV show
that this approach did not come up among the top performing
methods, we do not describe these features in detail here due
to space constraints.

4) Principal Component Analysis: PCA transforms the
coordinates of data in <D such that the data are expressed
in terms of D principal axes, arranged in order of decreasing
variance [14]. PCA has the ability to reveal hidden dynamics
underlying a complex dataset by expressing the data as a linear
combination of new basis vectors or Principal Components
(PCs). The first PC of a given set of correlated variables
encodes the maximum variance of the data, and is a linear
combination of the variables having the maximum variability
among all linear combinations. The second PC defines the next
largest amount of variation not accommodated by the first PC
and is orthogonal to the first PC and so on for subsequent
PCs. PCA can also be used to project the data onto a lower
dimensional subspace by selecting the M < D PCs associated
with the maximum variance of the data [14].

B. Methods Designed from Waveform Observation

We also decided to create features based on observation
of data. Fig. 1 presented and explained later in Section
IV-A shows that the different disturbance waveforms are
characterized by changes that are fairly distinctive to the
naked eye. Post-disturbance values can change quickly, or
slowly, increase, or decrease, deviate more or less from pre-
disturbance values, and continue to go through such changes
for different durations. Motivated by this observation, we
designed features described in the following subsections.

1) Slope Sequence: Based on the slope, which would
capture both the direction and steepness of a line, we propose a
new feature, Slope Sequence (S2), that can capture the trend
of changes in the data. From the entire data sequence, we
capture a sequence of slopes, i.e. S2, described now.

For a data point x(n), its K-step slope value is calculated
as

λ(n) =
x(n+K)− x(n−K)

2K
. (8)

For K = 1, given a waveform with N sampled points, S2 is
a sequence λ(2), λ(3), · · · , λ(N − 1).

2) Domain specific shapelets: In the past several years,
shapelets have been introduced as a new feature for time
series data [15]. Shapelets are time series “snippets” (or
sub-sequences). One major advantage of using shapelets as
time series features is its easy interpretability because it
is part of the original time series. Ever since the initial
introduction of shapelets by Ye and Keogh [15], shapelets
discovery has generated significant interest from independent
research groups (e.g., [15]–[19]). Since brute-force algorithm
to compute shapelets is not feasible because of the exponential
number of shapelet candidates, more efficient algorithms [17],
[20] have been proposed.

Motivated by the recent advances in shapelets discovery, we
extracted shapelets features by leveraging domain knowledge
from PMU data. A shapelet is any subsequence that differ-
entiates one type of sequences from other types. To design
our domain specific shapelets, we need to figure out what
is the intrinsic nature that makes the disturbance waveforms
different. For the PMU data, we observe that the disturbances



caused by the same physics, or in other words, corresponding
to the same disturbance event, show similar waveforms. We
also observe that the critical changes occur only in a short
time after the a disturbance is triggered. Therefore, we only
need to extract shapelets from a subset of the waveform close
to the trigger point. We denote the domain specific shapelets
as Dshapelet.

The first step of extraction Dshapelet finds the global
extreme points, including global maximum and global min-
imum, from the chosen subset. The anchor extreme point is
chosen as the first extreme point. This anchor extreme point
is used for the extraction of the Dshapelet feature. Next, our
algorithm extracts one subsequence that is centered at the
anchor extreme point and has length 2L+1. If the anchor point
is at index n1, then the extracted subsequence (or Dshapelet)
is Vn1−L, · · · , Vn1−1, Vn1

, Vn1+1, · · · , Vn1+L. For instance, if
the anchor extreme point is 20, which can be the global
maximum point, for length L=3, the Dshapelet that we extract
is the subsequence from samples 17 to 23.

3) Slope Sequence for Dshapelet (S3): Both the S2 feature
and the Dshapelet feature have their own advantages: the S2

feature captures the trend of a sequence by calculating the
changes of consecutive sequence values, while the Dshapelets
feature captures the shape of the most dramatic change. We
then design a new feature by combining these two features to
combine their strengths. The new feature of a waveform is the
slope sequence of its Dshapelet, and is denoted as S3.

4) Statistics-based features: The research in [21] developed
features, based on the statistics of the data, specifically for fault
and generation loss classes. These features are the elements of
the statistics-based feature vector reported in this paper. We
briefly describe these features.

1) Median vs. mean: The disturbance waveform is normal-
ized as

Vnorm(n) = |V (n)− V̄ | (9)

and the feature is calculated as

F1 =
V̄norm − Ṽnorm

σV
(10)

where V̄norm, Ṽnorm, σV is the mean, median, standard
deviation respectively of Vnorm.

2) Difference median and mean difference: The backward
difference magnitude of the disturbance waveform is

V̇ (n) = |V (n+ 1)− V (n)| (11)

and the feature is difference of the mean and median of
V̇

F2 = ¯̇V − ˜̇V. (12)

3) Variance distribution: The disturbance variance distribu-
tion feature first calculates the variance due to each point
in the waveform as

Vvar(n) =
[
V (n)− V̄

]2
. (13)

Elements of (13) are then sorted in descending order
yielding V̂var(n) and the minimum number of points

(minus one), nvar that could account for 60% of the
total variance is found, i.e.

nvar∑
n=0

V̂var(n) < 0.6

N−1∑
n=0

V̂var(n) (14)

where N is the total number of elements in V̂var. This
percentage was optimized experimentally. Finally, nvar
is normalized yielding the feature

F3 =
nvar
N

. (15)

4) Change distribution: This feature is calculated similarly
to F3, but rather than using the element-wise variance,
V̇ (n) is used and sorted in descending order, yielding
ˆ̇V (n). Then the minimum number of points (minus one),
nch that could account for 80% of the total change is
found, i.e.

nch∑
n=0

ˆ̇V (n) < 0.8

N−2∑
n=0

ˆ̇V (n). (16)

This percentage is also optimized experimentally. Fi-
nally, nch is normalized yielding the feature

F4 =
nch
N
. (17)

5) IMF Correlation: The Hilbert Spectrum, described in
[22], is computed for the voltage waveform resulting
in typically four Intrinsic Mode Functions (IMFs). The
correlations between each IMF and the voltage wave-
form are found. The feature is the ratio of the cross-
correlation between the first IMF and the original wave-
form and the maximum correlation between the original
waveform and all other components. One is added to
both correlations so that anticorrelations do not cancel
each other out. Details on the calculation of the IMF
Correlation feature, F5 can be found in [21].

6) Frequency falling ratio: This feature quantifies how
steady the frequency decrease is, i.e. the frequency
decrease from the maximum to the minimum values
and the time interval supporting this decrease. Our
observations revealed a steadily decreasing frequency is
typically associated with generation loss, which reflects
the physics of the event. Details on the calculation of
the frequency falling ratio feature, F6 can be found in
[21].

IV. EXPERIMENT DATA AND RESULTS

A. Data

Both actual and simulated disturbance data were utilized in
our evaluation. Field data were gathered from a PDC serving
four PMUs sampling at 30 frames per second (fps) located in
the 345-kV network of a WECC member utility in the United
States . Each PMU is set to trigger at ±10% change in the base
voltage, or ±0.05 Hz change in the base frequency (60 Hz),
or ±5 Hz/second change in the rate of change of frequency.
As mentioned in Section III, the disturbance files collected



from the PDC were pre-processed to construct data sequences
with 60 samples recorded in 2 seconds—0.5 s (15 samples)
before the triggering point and 1.5 s (45 samples) after (and
including) the triggering point. The field data set contain 23
waveforms corresponding to generation loss and 58 waveforms
corresponding to faults.

The number of events captured by field data is small and
hence poses challenges for training and evaluating classifiers.
Therefore, the PSLF dynamic simulation tool from GE was
used for creating a dataset of simulated PMU events belonging
to different event classes. In order to simulate actual operating
conditions of the grid, we took a load flow base case for the
WECC system, tagged as 2008 Heavy Summer, which can be
loaded into PSLF. Voltage and frequency probes were placed at
the four buses where the actual PMUs are located, and similar
triggering criteria was used as used by the actual PMUs.
Though data were sampled at 240 fps, they were downsampled
to 30 fps to be consistent with the field data. They were also
sized the same as the field data files.

Seven disturbance types, based on their importance in power
systems, were simulated: faults (FLT), generation loss (GL),
load switching (LS) on/off, reactive power switched in/out,
and synchronous motor switching off. For these disturbance
types, we generated 3495 events in total, and the breakdown
of the events is given in Table I. Examples disturbance data
are shown in Fig. 1. Notice the field waveforms for fault and
generation loss contain noise, whereas all the other simulated
waveforms are noise-free.

TABLE I: Number of simulated data events for seven distur-

bance classes.
class events
Fault (FLT) 1260
Generation loss (GL) 558
Load switching (LS) off 348
Load switching (LS) on 354
Reactive power switched out 497
Reactive power switched in 442
Synchronous motor switching off 36
Total 3495

B. Results

The features described in Section III were extracted from
the data and fed to both the KNN and SVM classifiers. In
addition, we also fed raw data directly to the classifiers, so
the effectiveness of different feature extraction techniques can
be compared with a baseline. The accuracy of our classifiers
is determined by the number of correct classifications as a
percentage of total number of classifications.

All coefficients were selected for DFT and and DWT. For
the PCA-based features the largest 20 principal components
were selected based on trials. Least Asymmetric wavelet was
chosen as the mother wavelet for DWT; however other mother
wavelets like Daubechies and Coiflet also gave comparable
results. k=1 was set for the S2 method, and L=4 was chosen
for Dshapelet. For S3, we generate the Dshapelet with L=5,
and then k=1 for slope. The larger L (=5) is used for S3

(a) volt. - fault - field (b) freq.-fault - field

(c) volt. - gen. loss - field (d) freq. - gen. loss - field

(e) volt. - Load OFF - simulated (f) freq. - Load OFF - simulated

(g) volt. - Load ON - simulated (h) freq. - Load ON - simulated

(i) volt. - VAR ON - simulated (j) freq. - VAR ON - simulated

(k) volt. - VAR OFF - simulated (l) freq. - VAR OFF - simulated

(m) volt. - Syn. Mot. OFF - simu-
lated

(n) freq. - Syn. Mot. OFF - simu-
lated

Figure 1: PMU recordings of different events.

because the slope sequence calculation reduces the length of
shapelets. Finally for the statistics-based features, we use a
feature vector consisting of the features [F1, . . . , F5] when
only the voltage waveform is used and [F1, . . . , F6] when
both voltage and frequency waveforms are used. For the KNN
classifier, we obtained good results with k = 1 and for the
SVM, a radial basis function with Gaussian kernel gave the
best results.

Every disturbance event affects the voltage as well as fre-
quency of the power system to varying extent. We carried out
classification exercise using 1) voltage data only, 2) frequency
data only, and 3) both voltage and frequency data. For the
third case, the features extracted from voltage and frequency



data were concatenated.
As explained in Section IV-A, we have ample datafiles for

seven simulated events, but only 81 field datafiles correspond-
ing to two events - faults and generation loss. For robust
evaluation of the performance of feature extraction methods
and classifiers given these constraints, we created four types
of experiments:

1) use simulated data corresponding to Generation Loss
and Fault for training a two-class classifier, and use field
data for testing (results in Table II),

2) use simulated data corresponding to all types of distur-
bances for training a seven-class classifier, and use field
data (two classes) for testing (results in Table III),

3) use simulated data corresponding to Generation Loss
and Fault for training a two-class classifier and testing,
using 10-fold cross validation (results in Table IV),

4) use simulated data corresponding to all types of distur-
bances for training a seven-class classifier and testing,
using 10-fold cross validation (results in Table V).

Tables do not show results with frequency data only, because
the concatenated data yielded better results in all cases. Since
the last two cases involve only simulation data, tenfold cross-
validation was used [23] and the dataset was partitioned 90%
for training and 10% for testing. For each training/testing
configuration, ten different tests were performed to guarantee
that each fold is used at least once as training data and used at
least once as testing data. Reference [6] provides more details
of this approach.

TABLE II: Training (1818 simulated events with faults and

generation loss) and testing (81 actual events)

Voltage Voltage and Frequency
1NN SVM 1NN SVM

Raw data 77.7 93.8 64.2 71.6
DFT 88.8 72.8 80.2 71.6
DWT 80.2 81.4 62.9 71.6
FDST 86.4 69.1 88.9 74.1
PCA 71.6 71.6 71.6 71.6
S2 81.5 95.1 88.9 93.8
Dshapelet 87.6 100 69.1 71.6
S3 95.1 97.5 88.9 100
Statistics 97.5 93.8 97.5 84.0

Observing the results in these tables, where highest accuracy
numbers are boldfaced, it is clear that concatenating the
features of voltage and frequency is desirable, although the
voltage waveform alone can also give good results. For such
features, S3 is able to classify faults and generation loss with
near perfect accuracy, when combined with SVM (Tables II,
III, IV). For the case in Table V, where all 7 classes are
being classified, the accuracy with S2 is above 90%, but
nowhere near perfect. Another important observation is that
raw data, and feature extraction methods that choose subsets
of raw data, as well as those that quantify properties of
raw data (DShapelet, S2, S3, Statistics) perform better than
the classical methods that decompose or transform the data

TABLE III: Training (3495 simulated events from 7 distur-

bance types), testing (81 actual events with FLT and GL)

Voltage Voltage and Frequency
1NN SVM 1NN SVM

Raw data 49.4 81.5 61.7 71.6
DFT 55.6 71.6 72.8 71.6
DWT 50.6 75.3 60.5 71.6
FDST 86.4 69.1 88.9 74.1
PCA 71.6 71.6 71.6 71.6
S2 50.6 87.7 56.8 85.2
Dshapelet 56.9 74.1 61.7 71.6
S3 77.8 82.7 72.8 100
Statistics 32.1 81.5 54.3 84.0

TABLE IV: Training (90% of 1818 simulated events with FLT

and GL), testing (10% of 1818 simulated events with FLT and
GL); ten-fold cross validation

Voltage Voltage and Frequency
1NN SVM 1NN SVM

Raw data 99.1 92.7 98.9 89.5
DFT 98.5 87.3 98.3 83.9
DWT 99.1 90.4 98.9 88.1
FDST 99.5 96.9 98.5 98.6
PCA 69.8 69.3 69.3 69.3
S2 99.9 99.4 99.9 99.2
Dshapelet 99.4 97.9 99.7 96.0
S3 99.9 99.3 99.6 99.3
Statistics 99.9 99.7 99.8 99.5

in to other domains. This is not surprising looking at the
disturbance waveforms in Fig 1, where the changes in voltage
and frequency waveforms are visually different for faults and
generation loss. The last observation is about the robustness
of the better performing method against noise in field data.
Simulation data used for training has no noise, but the field
data has noise as seen from Fig. 1 (a) through (d). With
the chosen parameters for S2 and S3, the noise does not
interfere with classification. It should be mentioned here that
the features for the Statistic approach were designed for only
fault and generation loss events. Therefore, its performance for
cases where all 7 classes are used for training (Tables III and
V) is inferior.

V. DISCUSSION AND FUTURE WORK

As explained in Section I, event identification has two
purposes: 1) system visualization, which is a SCADA-like tool,
and 2) supervisory protection, which verifies relay operation.
In this research, we have identified candidate features which
can lead to accurate event classification. It has been shown that
simple features based on slope and statistics work uniformly
better than classical methods. This is an important finding.
We have also been able to reduce the data to be processed
significantly by detecting the strongest PMU signal. We are
able to work with 1.5 s of post-disturbance data, which, even
with delays in communication and computing (slope/statistic
calculations impose very low calculation burden), is much



TABLE V: Training (90% of all 3495 simulated events with 7

disturbance types), testing (10% of all 3495 simulated events
with 7 classes); ten-fold cross validation

Voltage Voltage and Frequency
1NN SVM 1NN SVM

Raw data 80.6 75.2 86.9 77.8
DFT 74.8 66.5 81.8 64.3
DWT 80.5 74.1 86.9 74.9
FDST 73.9 70 82.9 77.4
PCA 36.7 36.1 36.1 36.1
S2 87.5 80.5 93.3 91.2
Dshapelet 78.2 69.9 86.3 79.6
S3 79.8 71.7 92.5 88.5
Statistics 77.1 69.2 82.8 76.2

faster than any methods reported for event identification in
literature so far.

For supervisory protection, faults need to be classified with
100% accuracy, because it is supposed to verify relay oper-
ations, detecting any misoperations. This has been achieved
with acceptable speed. Visualization is supposed to enrich
SCADA data, which is received once every 2-4 seconds.
The proposed application provides better speeds; however,
accuracy is not 100% when we consider all classes. This
needs to be addressed in future work. It was observed that
most misclassifications involved load/reactive power switching
with generation loss, which makes sense due to the similarity
in physics underlying these events. It is probable that more
PMUs in the system will alleviate this problem, since the
PMU nearer to the currently misclassified event may produce
stronger signatures and hence better features.

VI. CONCLUSION

This paper reports on the discriminating ability of a wide
range of features when applied to disturbance data recorded by
PMUs. Many features are proposed for the first time. Testing
is performed under a common dataset and using the same
classifiers. This exercise allowed us to investigate and balance
computational complexity with classifier accuracy which is
critical in real-time applications using PMU data. The use of
noisy field data tests the robustness of the features. Results
show that simple features based on slope and statistics, applied
to a rather small 1.5 s data-window on data from only one
PMU, offer the best discrimination, and outperform traditional
methods for both simulated as well as field data. The candidate
PMU is found based on detecting the strongest signal. The
S3 feature performs the best overall. Accuracy and speed of
event identification are excellent, and adequate for the intended
applications of better visualization and supervisory protection.
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