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Abstract--This paper will review a design
technique for analysis and synthesis filters used
in a 2-channel, perfect reconstruction filter bank.
Emphasis will be on actual design of the filters
within the filter bank structure using MATLAB.!

I. INTRODUCTION

A 2-channel filter bank decomposes a signal into two
frequency bands enabling the designer to process each signal
on a band-by-band basis. This decomposition has proven
useful in the past few years in the areas of speech coding and
image processing and shows promise in other areas such as
adaptive filtering. If the analysis and synthesis filters of the
filter bank are not properly designed, the signal can suffer
from a variety of ills including aliasing and amplitude and
phase distortions. However, these filters may be designed in
such a way that the effects of aliasing and the two distortions
are eliminated and thus the filter bank has a perfect
reconstruction property (i.e. the output is a scaled and delayed
version of the input). In this paper we offer a short review on
the theory of perfect reconstruction filter banks for the 2-
channel case and present our results for actual design and
implementation of these filter banks using MATLAB.

II. DESIGNING ANALYSIS AND SYNTHESIS
FILTERS FOR A 2-CHANNEL PERFECT
RECONSTRUCTION FILTER BANK

The typical 2-channel filter bank, often referred to as a
quadrature mirror filter bank (QMF), is illustrated in Fig. 1:
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Figure 1: 2-Channel Filter Bank

The decomposition of x(n) into two frequency bands is
performed in the analysis bank by H()(ei(”) (designed to be an

order N-1, low-pass filter) and H](ej‘”) (designed to be an
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overlapping, complimentary high-pass filter). The respective
output signals are then critically decimated. In the synthesis
bank, the signals are interpolated, filtered by the synthesis
filters, and recombined to yield a reconstructed signal. The
overlapping feature of the analysis filters allows the designer
to relax the sharp cutoff requirements at the expense of
introducing aliasing into the system. As Smith and Barnwell
[1] have shown, this aliasing can be canceled by proper design
of the synthesis filters.

A frequency-domain analysis of the reconstructed signal yields
the following result:
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The term corresponding to X(-eJ®) represents the effects of
aliasing and imaging due to the decimators and interpolators.
The aliasing term may be canceled by designing the synthesis
filters under the constraint that:

GoEl®) = Hj (<i?) (2a)
G1(@?) = -Hy(-I®) (2b)

We call (2) the alias cancellation condition. This choice
forces the aliasing term to equal O, resulting in a system
transfer function,
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In order that the 2-channel filter bank have the perfect
reconstruction property, (2) must hold and C(ei®) = ceJ®(N-1)

This latter condition implies that:

Ho(el®) Hy (<)) - Hy €0?) Hy(eI®) = deJoN-D (4

where d is a constant. In order to achieve (4), Smith and
Barnwell [1] define the channel 1 analysis filter to be:

Hj () = - JoN-DHy (<) 5)
This definition implies that:

Ho (@) Ho(e1®) + Ho(-1®) Ho(- 1) =d 6)



Therefore, we design an FIR linear phase, half-band filter
F(e)®) and perform a spectral factorization so that:

F(el®) = e70(N-DHy e®)Hp(eJ®) )

Note that N-1 must be odd or severe amplitude distortion will
result, see [2]. We then apply (2) and (6) or the equivalent
time-domain expressions:

h(n) = (-1)"ho(N-n) (8a)
go(n) =ho(N-n) (8b)
g1(m) =hj(N-n) (8¢

to determine the remaining filters in the filter bank. With
these filters, the output of the 2-channel filter bank is simply
a delayed and scaled version of the input. There is some

flexibility as to which zeros to assign to Hy(e®) and
Ho(e‘j(”). For simplicity, we take Ho@®) to be minimum

phase i.e. all zeros are inside or on the unit circle. For
alternate assignments see [1].

III. DESIGN ALGORITHM FOR A 2-CHANNEL
PERFECT RECONSTRUCTION FILTER BANK

The following algorithm is outlined in [2]:

1. Design an order 2(N - 1) (N-1 odd), FIR half-band filter

F(el®) using any of the common design algorithms such
as Parks-McClellan. The half-band property can be
achieved by constraining the passband and stopband edges
to be such that wp + wg = and the peak ripple in the

passband and stopband are equal.

2. Define F4()®) = F(e!®) + §, where 0 is the ripple in
F(el®).

3. Spectrally factor F4(el®)= e Jo(N-1) Hoel®)Hg (-el®).

4. Compute Hj (€I®), Go(el®), and G1(el®) via (2) and (6) or
®).

The following example will make the algorithm more clear
and illuminate some design issues that occur:

This example calls for Hy(e/®) to be a low pass FIR of order
15 and transition width to be 0.12x. We begin by designing
an order 30 half-band filter F(eJ®) with wp = 0.44x, ag =

0.56m using MATLAB’s implementation of the Parks-
McClellan algorithm (see Fig. 2):

N = 16;
wp = 0.44;
ws = 0.56;

f frequency = [0.0 wp ws 1.0];
f magnitude = [1.0 1.0 0.0 0.0];
f = remez((2*(N-1)),f frequency,f magnitude);

Next, we must make the amplitude response of F(el®) non-
negative (see Fig. 3):

fplus = £;
ripple = max(abs(f_frequency value)) - 1;
fplus(N) = fplus(N) + ripple;

Next, we factor F+(ei°°) and sort the roots in ascending order

according to magnitude (for min phase assignment).  In this
example, MATLAB places (for each double zero) one zero in
the top half of the vector £plus_roots and the other in the
bottom half of the vector so that we can assign the top half of
the vector (which contains all zeros inside the unit circle and

one of each double zero) to Hy @), Itisa good idea to make

sure that Ho(ei“)) contains the proper zeros (see Figs. 4(a) and

4(b)).

fplus roots = sort(fplus_roots);
ho poly(fplus roots(1l:(N-1)));
ho real(hO);

We next scale Ho(ejm) for unit magnitude in passband (see
Fig. 5):

[h0_frequency value,frequency] =
freqz(h0,1,512);

range = floor((512/2) - ((0.5 - wp)*512));
scale factor =

mean(abs (h0_frequency value(l:range)));

h0 = h0 / scale factor;

Finally, the remaining filters are assigned (see Fig. 6):

hl = hO(N:-1:1);

h1(2:2:N) = (-1) * hl(2:2:N);
g0 = hO(N:-1:1);

gl = ho;

gl(l:2:N) = (-1) * gl(1l:2:N);

Verification that these filters induce the perfect reconstruction
property (i.e. the system impulse response = d(k-N+1)) can
be computed with the following (see Fig.7):

h0(2:2:16) = zeros(1,8);
h1(2:2:16) = zeros(1,8);
y0 = conv(h0,g0);

yl = conv(hl,gl);

output = y0 + yl;

plot (output)

IV. CONCLUSION
In this paper, we have reviewed a technique for the design of
the analysis and synthesis filters used in a 2-channel, perfect
reconstruction filter bank. We presented a very simple and
efficient method to design these filters using MATLAB.
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Figure 2: Magnitude Response of F(el®)
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Figure 3: Magnitude Response of F(eJ®) + §
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Figure 4(a): Roots of F(z)
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Figure 4(b): Roots of min-phase Hy(z) Filter
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Figure 6 (left to right, top to bottom): Channel 0 Analysis Filter, Channel 1 Analysis Filter, Channel 0
Synthesis Filter, Channel 1 Synthesis Filter



System Impulse Response, ¢

0.6

0.4 [

03+ [

c(k)

0.2+ [

0 5 10 15 20 25 30
K

Figure 7: System Impulse Response for Design Example
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