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ABSTRACT

We demonstrate instantaneous frequency (IF) mass spectrometry
(MS) for the analysis of ion signals collected by image charge
detection. We illustrate IFMS for ion motion frequency estima-
tion based on instantaneous spectral analysis for the first time with
experimentally-collected ion signals. This approach allows the
observation of time-varying frequency estimates in contrast to typ-
ical Fourier transform mass spectrometry (FTMS) which provides
constant frequency estimates of spectral peaks. We illustrate this
approach for signals of quadrupole-selected ions collected with an
Orbitrap mass spectrometer. We observe time-varying frequency
phenomena in all ion transient signals and note an interesting ob-
servation with regard to the isotopologue signals of caffeine. While
the source of this time-varying phenomena has yet to be determined,
to the best of our knowledge, this is the first observation of such
behavior in an Orbitrap system utilizing IF analysis. Finally, we
provide deviation statistics of the IF from the FFT estimate using
our entire dataset and demonstrate that the time-averaged IF is in
general agreement with the frequency estimates provided by the
FFT.

Index Terms— Mass spectroscopy, Spectral analysis, Fourier
transforms, Adaptive signal processing

1. INTRODUCTION

Mass spectrometry (MS) provides precise data from systems as di-
verse as constrained industrial environments to open Earth systems
(e.g. soils, waterways, oceans), as well as tissues and the cellular
structures of organisms. Among the MS configurations are tech-
niques that rely on image charge detection and Fourier transform-
based signal processing such as Fourier transform mass spectrom-
etry (FTMS). Of these, Fourier transform ion cyclotron resonance
(FT-ICR) mass spectrometer is the premier tool for description of
the world’s most complex mixtures [1,2] and the Orbitrap mass spec-
trometer is the most broadly distributed and applied of the high res-
olution MS systems [3].

Time-dependent frequency components have been predicted for
FTMS ion signals for both Orbitrap and FT-ICR instruments [4–6].
A variety of mechanisms to explain the frequency variation have
been proposed [7–9]. A description of time-dependent instantaneous

frequency (IF) has been proposed to describe ion motion and spec-
tral generation in FTMS [10]. The benefit of instantaneous analysis
may be in additional insight into numerous experimental processes,
e.g. RF excitation, transient decay, frequency shifting, and frequency
to mass-to-charge ratio (m/z) calibration, where additional improve-
ments may be achieved [10].

The overarching goal of this work is to observe time-varying
frequency phenomena in MS transient signals. To that end, we intro-
duce instantaneous frequency mass spectrometry (IFMS) as a new
means of analyzing mass spectrometer signal transients. Traditional
Fourier-based methods, such as FTMS, utilize the FFT to produce
high-precision results with the use of relatively long signal obser-
vations. On the other hand, the precision of instantaneous spec-
tral analysis (ISA) [11] and adaptive mode decompositions (AMDs)
[12,13,13] does not depend on the signal length, but rather the sam-
pling rate. Thus, we propose an end-to-end method in which IF
estimates are obtained via AMD followed by ISA. Although prior
work [10] has been conducted in simulation, to our knowledge this
is a first demonstration of an actual implementation of IFMS using
experimental data. By enabling the observation of time-varying ion
behavior, our proposed end-to-end method has the potential to pro-
vide insight related to ion motion or could lead to efforts to improve
state-of-the-art instrumentation.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce our dataset and proposed end-to-end signal pro-
cessing method for IF estimation for MS, using an AMD and ISA.
Section 3 provides an illustrative example using caffeine ion sig-
nals, which includes the IF estimates for the isotopes. Additionally,
we provide and discuss summarizing statistics which compare val-
ues from the IF with those from the FFT. Finally, in Section 4 we
conclude the article.

2. INSTANTANEOUS SPECTRAL ANALYSIS OF MASS
SPECTROMETER SIGNAL TRANSIENTS

In this section, we describe the data collection environment and
the proposed end-to-end method for ISA of the signal transients.
This method includes a preprocessing stage, estimation of initializa-
tion parameters for variational nonlinear chirp mode decomposition
(VNCMD), signal decomposition via VNCMD, and AM-FM de-
modulation which results in a sequence of instantaneous amplitude
(IA) and IF estimates for each signal component. Fig. 1 shows
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Fig. 1. Block diagram of the proposed end-to-end method for ISA of the signal transients. A transient signal y(t) is pre-processed with
edge removal, normalization, bandpass filtering, and upsampling. The preprocessed signal x(t) is then utilized to estimate parameters for the
initialization of the VNCMD algorithm,

{
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, and segmented into a set of 201 sample segments, xn(τ). Via VNCMD, each segment
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the block diagram where y(t) denotes a signal transient to be an-
alyzed. A series of preprocessing steps are first performed on the
transient, including edge removal, normalization, bandpass filtering,
and upsampling. This yields the signals y1(t), y2(t), y3(t) and x(t),
respectively as shown in the figure. In the upper branch of the figure,
the preprocessed signal x(t) is then used to estimate parameters for
the initialization of the VNCMD algorithm, {ω̂n

k (τ)} where n is
the index for the signal segment, k is the index for the component,
and τ is the segment time index. In the lower branch of the figure,
the preprocessed signal x(t) is segmented into a set of 201 sample
segments, {xn(τ)}. Each segment xn(τ) is then decomposed into
(real) AM–FM components {snk (τ)} via VNCMD which are then
demodulated into IA, IF estimates {an

k (τ), ω
n
k (τ)}. These IF es-

timates are then filtered in order to mitigate the numerical effects,
yielding {an

k (τ), ω̄
n
k (τ)}. In the following sections, each of the

steps is discussed in more detail.

2.1. Data

The liquid solution used for data collection, Pierce™ FlexMix™
Calibration Solution, consists of several chemical standards which
are listed in [14]. Explicitly, we selected the dataset for this inves-
tigation to include caffeine, a peptide (MRFA), and an Ultramark
(UM1621) polymer that consists of a series of polymer molecules
with masses that are 100 Da apart [15].

We collected time-domain signals from a Thermo Fisher Scien-
tific Orbitrap Fusion [16] mass spectrometer with stand-alone signal
collection/processing electronics SpectroSwiss PXI FTMS Booster
[17,18] located at the New Mexico State University, Chemical Anal-
ysis and Instrumentation Laboratory (CAIL). Each data transient
was collected with sampling frequency fs = 3.90625 MHz and con-
sists of approximately 0.78 - 1.21 s of data, where slight variation
in collected length was an unintended consequence of the available
experimental triggering set-up. Table 1 lists all of the ions consid-
ered in the Calibration Solution along with their corresponding m/z
ratios.

2.2. Signal Preprocessing

As shown in Fig. 1, the signal preprocessing consists of edge re-
moval, normalization, filtering, and upsampling.

2.2.1. Edge Removal

The raw transient signal y(t) contains artifacts that are introduced
by the instrumentation at the start and end of the transient recording.

Table 1. The frequency bands utilized to capture critical re-
gions of the spectrum for the molecules under consideration were
separated into four non-overlapping bands. Caffeine and MRFA
each have unique filters because of their spectral isolation, while
UM1022, UM1121, UM1221, UM1321 share a single filter range
and UM1421, UM1521, UM1621, UM1721 share another single fil-
ter due to close spectral proximity.

Filter Freq (MHz) Nominal
m/z

Ions(s)

BPF 1 0.825 - 1.0500 195 caffeine
BPF 2 0.634 - 0.6390 524 MRFA
BPF 3 0.400 - 0.5000 1022, 1122,

1222, 1322
UM1022-UM1322

BPF 4 0.340 - 0.3865 1422, 1522,
1622, 1722

UM1422-UM1722

Therefore, we remove the artifacts by trimming 800 samples at the
start and 11,700 samples from the end, resulting in the signal y1(t).

2.2.2. Normalization

For convenience, the trimmed signal y1(t) is amplitude normalized
to have values ranging between +1 and −1, resulting in y2(t).

2.2.3. Bandpass Filtering

Experimentally, we found that working with the entire broadband
spectral range (100-2000 m/z) led to inconsistent decomposition.
Therefore, we utilized a filterbank to separate the spectrum into four
non-overlapping frequency bands. The filters have center frequen-
cies and bandwidths designed to capture critical regions of the spec-
trum for the molecules under consideration. However, the regions
are not selected to favor any specific molecule, as would be in prac-
tice, given no prior information on the substance under analysis. Ta-
ble 1 lists the frequency ranges of the filters as well as the ions which
fall within each range. Later in this section, information on the UM
ions used in the analysis will be provided. For implementation, we
choose to use a Butterworth filter of order six and to prevent phase
distortion, we filter the normalized signal y2(t) in both forward and
reverse directions resulting in y3(t).



2.2.4. Upsample

When using Fourier-based analysis methods, satisfying the Nyquist-
Shannon sampling criteria is sufficient to avoid aliasing effects [19].
However, accurate estimation of IFs via demodulation (e.g. using
an FM discriminator) requires oversampling due to numerical dif-
ferentiation [20]. Therefore, to have sufficient time-resolution to
perform accurate instantaneous demodulation, the bandpass filtered
signal y3(t) was upsampled by a factor of six, yielding the signal
x(t).

2.3. Instantaneous Spectral Analysis

ISA consists of two major steps: signal decomposition into AM–FM
components and demodulation of the components. There are a wide
variety of AMDs [12, 13, 13, 21, 22] that can be used to decompose
a signal into a set of constituent signal components. For this work,
we choose the VNCMD algorithm [23] because it allows the ini-
tialization of parameters which yields more accurate and consistent
components than other AMDs we tried including empirical mode
decomposition (EMD) and variational mode decomposition (VMD).
For more information on ISA theory and implementation, we refer
the reader to [11, 24, 25]. As shown in Fig. 1, the ISA for MS con-
sists of spectral peak detection, segmentation, signal decomposition,
AM–FM demodulation and IF filtering.

2.3.1. Spectral Peak Detection and Initialization

The VNCMD algorithm requires initial IF estimates in the form of a
time-series for each of the signal components. These initial IF esti-
mates were obtained via an FFT on x(t) with spectral peak detection,
resulting in the initialization parameters of the VNCMD algorithm{
ω̂k(τ)

}
.

2.3.2. Segmentation

The signal x(t) is segmented into intervals of length 201 samples
(chosen for computational convenience) resulting in {xn(τ)}, where
n denotes the interval index.

2.3.3. Signal Decomposition

Parameters for VNCMD as follows are bandwidth constraint α =
5× 10−12, convergence constraint β = 0.5× 10−2, and noise vari-
ance σ2 = 0 [13]. For each segment xn(τ) VNCMD results in a
set of signal components denoted snk (τ) where k is the component
index, n denotes the interval index, and 0 ≤ τ ≤ 200.

2.3.4. AM–FM Demodulation

Following decomposition, each AM–FM signal component segment
snk (τ) is assumed to consist of an intrinsic mode function [12] and
is demodulated to yield IA, IF estimates an

k (τ), ωn
k (τ) using the

demodulation algorithm given in [20].

2.3.5. IF Filtering

To alleviate some of the numerical errors introduced by the decom-
position and demodulation steps, the IF estimates were smoothed
resulting in ω̂n

k (τ).

3. RESULTS AND DISCUSSION

Although the emphasis of this work is in developing an approach
for IF estimation for transient analysis, it is important to compare
the time-averaged IF estimate ω̄k to the FFT estimate ωFFT

k . At the
conclusion of the end-to-end method, we have an

k (τ), ω̂
n
k (τ). We

concatenate the IF segments, ω̂n
k (τ), to form a single time-series

ω̂k(t) =
[
ω̂1
k(τ), ω̂

2
k(τ), · · · , ω̂N

k (τ)
]
. (1)

This process is repeated for each individual component, k. We define
the estimation deviation as

∆ =
∣∣∣ω̄k − ωFFT

k

∣∣∣ (2)

via the expectation operator Et[·]

ω̄k = Et

[
ω̂k(t)

]
. (3)

Table 2 gives the mean and standard deviation of the IF estimation
deviations, i.e. ∆̄ and σ̄, for the dataset.

We note in Table 2 that in general, ∆̄ is less than 1 Hz for the ion
signals under examination with the exception of those signals at the
band edges. IF-derived frequency estimates vary most markedly for
caffeine ion signals, which are the ions with the lowest m/z and high-
est motional frequency of our test mixture. Note that the quadrupole
ion selection window employed, 2 m/z, results in multiple isotopo-
logues being present within the Orbitrap, and these ion ensembles
interact during the measurement. Ion-ion interactions and/or other
electric field imperfections that affect ion motion and frequency oc-
cur at higher rates for lighter ions and may account for the exagger-
ated variability of IF estimates across those signal segments which
are temporally-separated.

In order to compute a range for the FFT frequency resolution,
we consider the shortest and longest signal windows and the num-
ber of points in the FFT. The shortest signal window was for the
caffeine ion signal which resulted in 18,213,498 samples while the
longest signal window was for the UM1721 molecule which resulted
in 28,394,010 samples. Therefore, the range of the FFT frequency
resolution is 0.83–1.29 Hz. We find that in general, the average devi-
ations are on the order of the FFT resolution and thus, the estimates
provided from an average IF are in agreement with the FFT.

Of all the ions in Table 2, the caffeine ion signal exhibited the
most deviation. Fig. 2 illustrates ω̂k(t) for components associated
with caffeine ion signals, with each of the three components shown
corresponding to a peak in the FFT magnitude spectrum shown in
Fig. 3. For the convenience of the reader, we have superimposed a
horizontal line in Fig. 2 at the numerical value of each peak in Fig. 3
corresponding to the FFT-based estimate for these ion signals. Fig. 2
shows unexpected periodic oscillation in the correspondent time se-
ries. We note that, although not shown, all molecules subjectively
appear to have a deviation which is correlated across the isotopes al-
though it may not be periodic. Further perturbation of the system in
terms of ion number, observation period, and spectral composition
are needed to determine the source of these frequency fluctuations
and the patterns observed in Fig. 2. The IFMS process described
here is uniquely suited to the study of such phenomena.

To the best of our knowledge, this is the first observation of such
time-varying behavior through the use of IF analysis. We hypothe-
size that this variation could be attributed to either 1) ion behavior or
2) instrumentation artifacts, but determining the true source of this
variation is beyond the scope of this work. While not fully under-
stood, this observation may be of importance in advancing MS. If
this observation is due to ion behavior, this work could potentially
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Fig. 2. Instantaneous frequency estimates ( ) for three caffeine
ions (a) (13O1C7H10N4O2) + [H+], (b) (15N1C7H10N3O2) + [H+], and
(c) (C8H10N4O2) + [H+]. In each of the plots, we see consistent os-
cillations across the signal, however, there are sections (in between
0.15 seconds and 0.27 for example) which appear to be more con-
stant near the FFT peak frequency ( ).

Fig. 3. Magnitude spectrum for caffeine showing three expected
peaks at 1.03941959 MHz (13O1C7H10N4O2) + [H+], 1.03943493
MHz (15N1C7H10N3O2) + [H+], and 1.04208900 MHz (C8H10N4O2)
+ [H+].

provide more insight related to ion motion or if this observation is
due to artifacts, this work could improve state-of-the-art instrumen-
tation.

4. CONCLUSION

In this paper, we proposed an end-to-end method for IF estima-
tion of MS signal transients using VNCMD and ISA. The resulting
IF sequence enables the observation of time-varying frequency
phenomena in a single transient. Using a Thermo Fisher Scientific
Orbitrap Fusion with SpectroSwiss PXI FTMS Booster, we acquired
MS signal transients for several molecules, performed ISA, and ob-
served time-varying frequency phenomena in the transient, which to
our knowledge, has not previously been observed. The most interest-

Table 2. ω̄FFT
k denotes the frequency estimate from the FFT aver-

aged over the transient signals. The mean and standard deviation of
the deviation.

Isotope ω̄FFT
k (Hz) ∆̄ (Hz) σ̄ (Hz)

Caffeine–1 1,039,419.59 4.533 18.958
Caffeine–2 1,039,434.93 4.593 18.990
Caffeine–3 1,042,089.00 5.426 19.744
MRFA–1 634,485.38 0.583 2.498
MRFA–2 634,491.88 0.582 2.512
MRFA–3 635,091.08 0.588 2.523
MRFA–4 635,698.32 0.597 2.534
UM1022–1 454,856.31 0.068 1.068
UM1022–2 455,079.17 0.096 1.323
UM1022–3 455,302.57 0.076 1.098
UM1121–1 434,152.58 0.688 0.708
UM1121–2 434,346.45 0.705 0.718
UM1121–3 434,540.66 0.709 0.747
UM1221–1 416,040.87 0.633 0.644
UM1221–2 416,211.45 0.658 0.648
UM1221–3 416,382.33 0.661 0.653
UM1321–1 400,021.69 0.617 0.773
UM1321–2 400,173.40 0.608 0.781
UM1321–3 400,325.29 0.612 0.786
UM1421–1 385,151.07 0.641 0.487
UM1421–2 385,856.94 0.570 0.508
UM1421–3 385,993.13 0.565 0.514
UM1521–1 372,852.24 0.618 0.388
UM1521–2 372,974.97 0.544 0.388
UM1521–3 373,097.78 0.546 0.403
UM1621–1 361,190.99 0.552 0.380
UM1621–2 361,302.59 0.531 0.389
UM1621–3 361,414.14 0.532 0.390
UM1721–1 350,559.53 1.655 1.272
UM1721–2 350,661.64 1.762 1.304
UM1721–3 350,763.77 1.750 1.308

ing time-varying frequency phenomena was observed in the caf-
feine sample. Although the source of the time-varying phenomena
is currently unknown, we conjecture that it may be attributed to ion
behavior or instrumentation artifacts. In addition, we provided de-
viation statistics of the IF from the FFT estimate and demonstrated
that the time-averaged IF of each component of each molecule is
in agreement with the frequency estimates provided by the FFT. Fi-
nally, by enabling the observation of time-varying ion behavior, our
proposed end-to-end method has the potential to provide insight re-
lated to ion motion or could lead to efforts to improve state-of-the-
art instrumentation. This ability to observe time-varying ion behav-
ior during ion signal detection can inform study of ion cloud signal
coalescence for ion packets with minimal m/z differences (i.e. peak
coalescence), optimize the shapes for electrodes involved in ion trap-
ping, excitation, and detection, and provide insight on optimum ion
excitation and isolation waveforms for different trap geometries, and
monitor the evolution of ion-ion interactions that perturb ion motion
and limit signal resolution, for example.
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