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Abstract—One approach to enhancing security in a wireless network
environment is by uniquely identifying particular network devices via
physical, hardware-level traits. Such traits are not easily spoofed because
they are typically tied to unique hardware variations and imperfections
introduced in the manufacturing process. In this work, we classify
individual radio frequency (RF) devices using a feature vector based on
the instantaneous frequency (IF) of the power ON transient. To evaluate
the performance of the proposed feature vector, we collected 1889 RF
bursts from six Laird CL4790 ConnexLink RS232 RF modules in a high
SNR environment. From these bursts we extracted the proposed feature
vectors. With an ensemble-based classifier, we achieve better than 95%
accuracy; we also include an evaluation of the feature in noisy conditions.
From this work we find that a feature vector based on the IF during a
transient event, appears to provide a unique RF device fingerprint which
is easily extractable.

I. INTRODUCTION

Providing security in a wireless network environment is a challeng-
ing problem because access to network resources is possible without
being physically connected. One way to enhance security is through
unique identifiers associated to particular network devices without
considering easily forgeable identifiers such as MAC addresses and
user credentials [1]. Prior research has demonstrated the ability to
identify a device via physical, hardware-level traits due to varia-
tions/imperfections in the circuitry associated with manufacturing
differences [2]. One way these variations/imperfections manifest is
through unique transient events when an RF transmitter is activated
or deactivated. Features extracted from these transient events may
provide a unique “fingerprint” for a radio frequency (RF) device
that is similar to a biometric for human identification [3]. Thus,
RF device fingerprinting can offer an additional defensive layer of
security beyond conventional (software) protocols for authentication
[4], [5].

More specifically, hardware-based device-level fingerprinting of-
fers additional security and safeguards against attacks such as device
cloning, message replay, and spoofing attacks [6]. On the other hand,
fingerprinting may also be used offensively to gain information about
network operations or to gain information about specific network
users [6]. A skilled attacker, for example, may be able to exploit a
device fingerprint to violate sender anonymity, in order to associate
a transmission to a specific sender. For example, FM transmitters
have been shown in many cases, to have relatively short transient
characteristics directly following when the transmitter is activated
or “keyed” [7]. Potentially, these transient characteristics are similar
enough that the device model may be identifiable, and in the best
case are unique enough to allow identification of an individual device.
Recently, the widespread availability/use of software defined radios
(SDRs) has lowered the barrier to adversarial cloning and spoofing
[8]. One potential defense against these attacks could be RF device
fingerprinting.

Methods for RF device fingerprinting are broadly divided into two
categories characterized by imperfections in timing or modulation
[5]. Many of the studies to date have focused on identifying these
imperfections in either the ON and/or OFF transients of the wireless
transmission, or alternatively the “steady state” segments of the
wireless transmission [3], [4], [6], [7], [9], [10]. We note that some
authors refer to a more general problem known as specific emitter
identification (SEI) which seeks to designate the unique transmitter
of a given signal using only external feature measurements [11],
[12]. However, the focus of SEI research is often the development of
RF device fingerprints. Most common fingerprinting methods utilize
statistical, time-frequency/time-scale, or parametric models for the
fingerprint.

For example, in [6] features based on signal amplitude statistics
are considered, in [13] higher order statistics for common digital
modulation schemes are considered, in [14] a cycle-frequency domain
profile (statistical) feature for orthogonal frequency division multi-
plexing (OFDM) signals is proposed and tested on an IEEE 802.11a/g
WLAN device, and in [15] a normalized permutation entropy is used.
Other work uses time-frequency and time-scale methods. For example
features are considered based on wavelet coefficients extracted from
the transients [16], empirical mode decomposition and Haar wavelet
decompositions [17], Hilbert-Huang Transform [18], [19], ambiguity
function and Wigner distribution [20], and the intrinsic time-scale
decomposition [21]. Finally, other work seeks to use parametric
model parameters as features. In [9], the authors identified a feature
based on a proxy for fractal dimension which measures change in
detail with respect to change in scale. In [22], the authors propose
to model circuit-dependent nonlinear emitter characteristics using a
complex power series while in [23] and [24], the authors propose
to extract a set of intrapulse parameters modelling the AM and FM
waveforms.

In this work, we propose to use the sequence of instantaneous
frequencies (IFs) [25] during the input-on transient as the feature
vector for RF device fingerprinting. As we will demonstrate, this
feature is easily extractable and can be quite discriminating. The
remainder of this paper is organized as follows. In Section II,
we provide information about our data collection environment and
feature extraction. In Section III, we describe our observations of
the data using principal component analysis (PCA), then evaluate
the proposed feature vectors using an ensemble-based classifier at
various levels of SNR. We discuss the results and other observations
in Section IV and conclude the article in Section V.

II. METHODS

A. Data Collection

Our data collection environment consists of the following arrange-
ment. We use a SDR model USRP B210 connected to a PC using



GNU Radio for radio device control and data acquisition. The SDR
independently captures the communications signals from each of the
two radio devices, simultaneously. The devices under test consist of
six Laird CL4790 ConnexLink RS232 RF modules operating at 900
(902-928) MHz with 1 watt output power. We designated the six
radios as CL47901 through CL47906. While the devices do not have
individual serial numbers, radios CL47901 through CL47904 had
consecutive MAC addresses and radios CL47905 and CL47906 had
different but consecutive MAC addresses. We assume that consecutive
MAC addresses indicate a common manufacturing lot.

During the data acquisition, the radios operate using a frequency-
hopping spread spectrum wireless communication protocol in a half-
duplex mode. The resulting communications were sampled using
a rate of fs = 30 MHz centered at fc = 915 MHz and 16-bit
interlaced in-phase and quadrature (I/Q) data were saved as .sc16
files. We note that while the radios are connected to the acquisition
system using a minimum of 30 dB attenuation, the data collection
environment is relatively free from noise and other RF disturbances
due to the wired connections from the devices under test to the
acquisition system. Thus we consider the recordings as noise-free.
We evaluate classifier performance in various SNR environments in
Section III-B.

B. Feature Extraction

Data collection results in a continuous recording of the inter-
mediate frequency signal sampled at 30 MHz, approximately 40
seconds in length. The STFT magnitude for the beginning of a
recording is shown in Fig. 2(a). Prior to feature extraction, GNU
radio segments the continuous recording into individual RF bursts by
shifting the frequency band of interest to DC, lowpass filtering, and
downsampling to 6 MHz. The resulting signal bursts, summarized in
Table I, are approximately 40 ms in duration and are roughly aligned
such that the RF burst begins at approximately t = 125 µs. The
STFT magnitude for the first 1/8th of a single RF burst is shown in
Fig. 2(b) with the transient event highlighted in the grey box.

In this work, we propose to directly use the IF sequence within
the transient event as the feature vector. Shown in Fig. 1 is the block
diagram for the signal processing involved in feature extraction. Be-
cause of the temporal nature of the proposed feature vector, a second
fine-grained time-alignment is necessary prior to classification. Time-
alignment consists of determining a time-shift parameter ∆t using
a cross-correlation of a “template” with the instantaneous power-
weighted (IA squared) lowpass filtered IF. This step occurs within
the “estimate alignment parameters” block in Fig. 1. The template is
pre-built by choosing a random subset of RF bursts from each class
and averaging the instantaneous power-weighted IFs. Because of the
frequency-hopping nature of the communication protocol used by
the radios [see Fig. 2(a)], a second fine-grained frequency alignment
is also necessary. Frequency-alignment centers the IF about zero
using a frequency-shift parameter ωs. The frequency-shift parameter
is determined by averaging the IF after completion of the transient,
i.e. in the steady state. This step also occurs within the “estimate
alignment parameters” block in Fig. 1.

Using the two alignment parameters, the IF sequence is both time-
aligned to the template and frequency-centered at zero. Once aligned,
we segment the transient to approximately 40 µs. This is depicted in
the alignment/segment block in Fig. 1. The aligned and segmented
transient is demodulated and lowpass filtered resulting in a length 251
feature vector, ωLP(t). This length encapsulates approximately 20 µs
before and after the IF peak and captures the majority of the transient
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Figure 1. Block diagram for the signal processing involved in extracting a
feature vector ωLP from the RF burst z(t) consists of estimation of signal
alignment parameters {∆t, ωs}, alignment, segmentation, IF estimation ω(t),
and lowpass filtering. For evaluation of robustness, additive white Gaussian
noise n(t) is included.

event. Fig. 2(c) shows STFT analysis for a single RF transient with
the lowpass filtered IF estimate (black line) overlaid.

III. SIMULATIONS AND RESULTS

A. Data Exploration

To visually assess the separability of the classes, we project
the feature vectors onto three dimensions, using PCA. The first
three principal components (corresponding to the three directions of
maximum variance) of the data are shown in Fig. 3, and the color
associations for the devices are given in Table I. We note that radios
CL47901 through CL47904 are tightly clustered in PCA space and
as noted earlier, are possibly from the same manufacturing lot.

B. Classification

Next we use the proposed feature vector as a “device fingerprint”
for classification. For the classifier, we use an ensemble of 1000 tree
classifiers with bagging, implemented using the fitcensemble
function in MATLAB. The data in Table I was randomly partitioned
into subsets: 80% for training and 20% for testing. To simulate the
effects of noise, we mixed complex additive white Gaussian noise
(AWGN) n(t) to the signal z(t) as shown in Fig. 1 at prescribed
SNR values. This allows the evaluation of robustness of the proposed
device fingerprint in non-ideal conditions. To isolate the deleterious
effects of noise on the feature vector from the effects on the alignment
procedure, we use the same alignment parameters for all SNR levels
as illustrated in Fig. 1. We justify this choice because the relatively
simple alignment procedure used in this work could be improved
or replaced with a more robust methodology. Alternately, alignment
could be eliminated by utilizing a classifier which natively models
time-dependent phenomena such as a recurrent neural network. For
each SNR level we perform 30 trials and report the average percent
accuracy. Finally, we consider the feature extraction as described
above, both with and without the lowpass filtering. The results of
these analyses are summarized in Table II and Fig. 4.

IV. DISCUSSION

In prior research, methods for RF device fingerprinting are char-
acterized by imperfections in either timing or modulation. In this
paper, we proposed the use of the IF as a feature for RF device
fingerprinting. The instantaneous nature of the IF encapsulates both
timing and modulation imperfections. Furthermore, extraction of the
proposed feature vector is both conceptually and computationally
simple, potentially allowing real-time implementation.

Classification results show that in high SNR environments, the
proposed feature provides excellent classification accuracy. At lower
SNRs, lowpass filtering improves accuracy, e.g. at 5 dB the im-
provement is 11.2%. We find that classifier accuracy smoothly
degrades over the range of SNRs from 10 dB to −10 dB. However,



Device CL47901 CL47902 CL47903 CL47904 CL47905 CL47906 Total

# RF Bursts 323 291 321 305 342 307 1889
Table I

THE NUMBER OF RF BURSTS FOR THE DEVICES UNDER CONSIDERATION. THE TEXT COLORING CORRESPONDS TO MARKER COLOR IN FIG. 3.
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Figure 2. Time-frequency (STFT) visualization of the data at various time scales. (a) A segment of the continuous RF recording, from the data acquisition
system, showing the presence of multiple RF bursts. (b) Start of a single RF burst with the transient event highlighted in the boxed region. (c) The transient
event corresponding to the boxed region of the RF burst in (b), with the filtered IF estimate overlaid (black line). For this example, at about t = 1.75×10−5,
we observe a rapid change in IF during the input-on transient. This transient is unique enough to discriminate between individual radio devices.

SNR (dB)

Feature Vector 60 30 20 15 10 8 5 3 0 −3 −5 −8 −10 −20

ω(t) 95.2 94.1 91.2 86.1 77.5 70.4 57.8 52.9 41.4 33.7 28.2 21.2 18.8 17.2
ωLP(t) 97.4 97.4 96.6 95.5 91.0 87.7 79.0 72.1 58.0 43.5 34.8 26.7 21.7 17.1

Table II
PERCENT ACCURACY FOR DEVICE CLASSIFICATION USING THE UNFILTERED ω(t) AND FILTERED ωLP(t) IF ESTIMATE AS A FUNCTION OF SNR IN

DECIBELS.

more sophisticated noise reduction techniques could be employed.
Additionally, in a more realistic networked environment of wireless
devices, source separation may have to be considered in order to
isolate individual transients prior to feature extraction.

We assumed that consecutive MAC addresses indicate a common
manufacturing lot. If true, the plot in Fig. 3 suggests that devices
manufactured within a common lot have features which are more

similar than those from other lots. This could be exploited to identify
devices within a common manufacturing lot and thus be used to detect
MAC address spoofing. As with any classifier, performance may
degrade as the number of classes (radio devices) increases assuming
the feature vectors are similar. However, our observation noted above
suggests that devices manufactured in different lots may not have
similar feature vectors. Further investigation is necessary to ensure
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Figure 3. The first three principle components of the time-aligned lowpass
filtered IFs where color denotes devices 1 (×), 2 (×), 3 (×), 4 (×), 5 (×), and
6 (×). All devices are distinctly clustered in PCA space, i.e. not distributed
randomly. The level of separability in the three dimensions shown, varies
among the devices. The ×s are well separated from the other devices. The
×s are the most spread out in a crescent moon shape. The other 4 are more
tightly arranged.
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Figure 4. Classifier accuracy as a function of SNR for the unfiltered ω(t) ( )
and filtered IF ωLP ( ) estimates. Below -10 dB the accuracy approaches
random chance. Above 10 dB the accuracy is above 75%. Filtering improves
the classifier accuracy regardless of SNR.

that the proposed method scales appropriately when considering a
large number of radio devices. Finally, while some authors have noted
that a device’s RF transient does in fact change over time, there is
limited investigation reported in the literature on the consistency of
a device’s RF transient over time and how it changes as the device
ages. In addition, other effects on the IF due to Doppler, multi-path,
fading, temperature variation, and battery condition many also need
to be considered.

V. CONCLUSION

In this paper, we have proposed the viability of directly using the
IF of the power ON transient as a feature for RF device fingerprinting.
Previous research has shown that wireless model (e.g. model number)
identification is an easier problem than individual device (e.g. serial
number) identification. We considered individual RF device identifi-
cation using six wireless devices from the same model family. With
an ensemble-based classifier, we achieved better than 95% accuracy
in a high SNR environment. In our evaluation of the classifier in a
noisy environment, we found that accuracy degrades smoothly over a
20 dB SNR range. Based on this analysis, our proposed feature vector
which based directly on the IF of the power ON transient event can
provide a unique device fingerprint which is easily extractable.
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