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— Spherically Invariant Random Pro-
cesses (SIRPs) have been used as a statistical

model for speech and shown to better fit mea-

sured probability density functions. With the G-

function, SIRPs are conveniently represented and

applications involving speech (SIRPs) can be an-
alyzed. This paper describes work in character-

izing G-function SIRP parameter distributions for

American English.

I. Introduction

In many DSP applications that process speech sig-
nals, it is desirable to have a statistical model for these
signals in order to predict system performance. Exam-
ples of such applications are speech coders, adaptive
filters, and co-channel speech separators [3], [5]. One
important aspect of the statistical model for speech is
the probability density function (pdf) which mathe-
matically describes the histogram of amplitudes for a
large number of speech samples. Standard statistical
models for speech pdfs include Laplacian, K0 (Bessel),
and Gamma pdfs as illustrated in Fig. 1 [8]. None
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Fig. 1. Speech pdf and Laplace, K0, and Gamma pdfs.

of these pdfs precisely model the speech pdf or the
corresponding bivariate (three dimensional amplitude
histogram taken from sample pairs of speech signals
spaced less than 5ms apart) speech pdf [4]. The bivari-
ate speech pdf captures important temporal relations
between the speech samples.

Work by Brehm and Stammler in the 1980’s devel-
oped of a more refined statistical model for speech sig-
nals using G-function Spherically Invariant Random
Processes (SIRPs) also known as circularly or spheri-
cally symmetric random processes [1], [2], [7]. These
SIRPs were shown to model the univariate pdf more
precisely than other models and additionally, modeled
the bivariate speech pdf as well. The use of SIRPs to
model speech signals is based on two important facts:
1) many random processes are SIRPs including those
with Laplace and Gamma pdfs and 2) actual speech
bivariate pdfs have been shown to exhibit circular or
elliptical contours which is a property of the SIRP [2].
G-functions are used to efficiently describe, analyze,
and perform calculations on the SIRPs. When used to
model speech signals, the G-function description of the
SIRP uses two parameters to adjust the pdf to match
observed histograms for individual speech signals.

In this paper, we provide an overview on SIRPs and
G-functions. We then describe results for G-function
SIRP parameter distributions for American English
speech based on the TIMIT Speech Corpus [6]. With
these parameter distributions, more precise analysis of
system performance under American English speech
signals can be determined. To illustrate the utility
of the results, we calculate a robustness measure on a
recently-proposed algorithm for co-channel speech sep-
aration and compare to a database of actual speech
signals [5].

II. Using SIRPs to Model Speech Signals

A. SIRP Basics

A SIRP can be classified as a stationary random pro-
cess characterized by having a multivariate pdf f (x),
where x = [x1 . . . xν ]T that depends only on a radius,
r = xT x. Thus the ν-order pdf will have circular con-
tours. The most familiar SIRP is the uncorrelated
Gaussian process which can be seen by considering the
bivariate (x = [x1x2]

T ) case (zero mean and unit vari-
ance)

f(x) =
1
2π

exp
(

−xT x
2

)

. (1)



When correlated processes are considered, the SIRP
definition is modified to include the correlation matrix,
R and the radius is now defined by r = xTR−1x. In
the correlated case, the ν-order pdf will have elliptic
contours. As an example of a correlated SIRP, consider
the bivariate correlated Gaussian process (zero mean,
unit variance)

f (x) =
1

2π|R|1/2
exp

(

−xT R−1x
2

)

. (2)

SIRPs are thus completely characterized by their
univariate pdf and correlation matrix. In order to an-
alyze systems under SIRPs and still maintain mathe-
matical tractability, the G-function is used to express
the univariate SIRP. The next section gives a brief re-
view of the G-function.

B. Expressing SIRPs with the G-Function

The formal definition of the G-function is
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where Γ() is the well-known Gamma function and the
path of integration, C, goes from σ − j∞ to σ + j∞
so that all poles of Γ(bi − s), i = 1, . . . , m, lie to the
right of the path, whereas all poles of Γ(1 − ai + s),
i = 1, . . . , n lie to the left [1]. Fortunately, many op-
erations on the G-function can be reduced to several
rules and thus it is not always necessary to work di-
rectly with (3) [1].

C. Modeling Bandlimited Speech with SIRPs

The motivation for modeling speech with SIRPs (ex-
pressed with G-functions) is for a more precise fit to
the univariate speech pdf as well as a fit to the bi-
variate speech pdf. As developed in [2], the univariate
speech pdf is modeled by

f(x) = AG
2 0

0 2

(

λx2 |b1, b2

)

(4)

where

A =
λ1/2

Γ(1
2 + b1)Γ(1

2 + b2)

λ = (
1
2

+ b1)(
1
2

+ b2). (5)

TABLE I
Various pdfs expressed with G functions

pdf f(x) b1 b2 A λ

Laplace 1√
2

exp
(

−
√

2 |x|
)

0 1
2

1√
2π

1
2

K0
1
π K0(|x|) 0 0 1

2π
1
4

Gamma
( √

3
8π|x|

)1/2

exp
(

−
√

2|x|
2

)

− 1
4

1
4

√
3

4π
√

2
3
16

The G
2 0

0 2

(

λx2 |b1, b2

)

class of functions is a gener-

alization of SIRPs and includes the Gaussian, Laplace,
K0, and Gamma pdfs as described in Table I.

Since the G
2 0

0 2

(

λx2 |b1, b2

)

function provides a

general representation for pdfs (some of which have
been used to model speech pdfs) there is the possibility
that by continuous variation of b1 and b2, a whole fam-
ily of modeling pdfs may be generated—one of which
may be a better approximation to the speech pdf than
those listed in Table I. This idea is illustrated in Fig.
2 where we have selected b1 and b2 to best fit (in a
least squared error sense) the speech pdf. We note
that in terms of total squared-error between the ac-
tual speech pdf and the model, the G-function SIRP
model is the best fit. Previous work provided b1, b2
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Fig. 2. Speech pdf and Gamma and G-function SIRP pdf
models.

parameter data based on five speakers [2]. The data is
of limited value due to the small population study and
in addition, no distributions for these parameter pairs
are given. We present more comprehensive parameter
distributions based on a larger population set in the
next section.

The bivariate SIRP pdf for modeling the bivariate
speech pdf can be computed as

f (x) =
(

λ

π

)1/2 A

|R|1/2
×
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1 3
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λxTR−1x
∣

∣

∣

∣

−1
2
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2 , b2 − 1

2

)

(6)

where the correlation matrix is given by

R =
[

r0 rN

rN r0

]

(7)

and N is the time shift (in samples) between x1 and
x2 [2].

When the time shift between the two speech signals
used to compute the bivariate speech pdf is less than
3.8 ms, the SIRP model also fits the observed contour
lines in the bivariate speech pdf very well (Fig. 3) [2].
We note that without extremely long speech signals,
it is difficult to acquire enough data points to produce
continuous contours of the bivariate speech pdf.
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Fig. 3. Speech bivariate pdf (speech signals 1.25ms apart) (*)
and G-function SIRP model (solid line).

III. SIRP Parameter Distributions for
American English

Using the TIMIT speech corpus of 630 speakers, we
computed G-function SIRP b1, b2 parameters for each
speech signal. The parameters are determined by first
computing the histogram of each speech signal. Then
a search for the b1, b2 parameter pair which best fits
the histogram is conducted. We have found in our
work that the error surface from such a search has a
single global minimum so a unique parameter pair is
obtainable.

With the b1, b2 parameter pairs from each of 630
speakers collected, we are able to characterize the
parameter plane for the G-function SIRP model of
American-English. Figs. 4 and 5 illustrate this char-
acterization. We note from the data, that various pro-
portions of the TIMIT population are well represented
within a small parameter range as described in Table
II.
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Fig. 4. Distribution of b1, b2 parameter pairs for TIMIT speech
corpus.
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Fig. 5. Contour plot of distribution of b1, b2 parameter pairs
for TIMIT speech corpus.

IV. Robustness Calculation for Speech
Separation Algorithm

The problem of co-channel (mixed) speech sepa-
ration has been recently studied and one proposed
method for separation employs a strategy of kurto-
sis maximization [5]. This work relies on a critical
assumption that the kurtosis, defined as

κX =
E

[

x4
]

E [x2]2
(8)

is lower in the mixture of speech signals than in the
separated speech signals.

TABLE II
b1, b2 ranges for TIMIT population.

100% of TIMIT population −0.44 ≤ b1 ≤ −0.17
−0.49 ≤ b2 ≤ 1.11

95% of TIMIT population −0.42 ≤ b1 ≤ −0.26
−0.49 ≤ b2 ≤ 0.5

90% of TIMIT population −0.41 ≤ b1 ≤ −0.27
−0.49 ≤ b2 ≤ 0.42

75% of TIMIT population −0.41 ≤ b1 ≤ −0.28
−0.29 ≤ b2 ≤ 0.32



Since we assume zero-mean, unit-variance SIRPs,
we need only compute E

[

x4
]

in (8) since E
[

x2
]2 = 1.

It can be shown that for the G
2 0

0 2
SIRP,

κX =
(

b1 + 3
2

) (

b2 + 3
2

)

(

b1 + 1
2

) (

b2 + 1
2

) . (9)

As a side note, using b1, b2 values in Table I in (9) we
get the well-known kurtosis values for Laplace (κX =
6), K0 (κX = 9), and Gamma (κX = 11 2

3 ) pdfs.
For a mixture of independent SIRP random vari-

ables, Z = αX + (1 − α)Y where α is the mixing pa-
rameter, it can be shown (assuming zero-mean, unit-
variance random processes)

κZ =

{

α4

(

bx,1 + 3
2

) (

bx,2 + 3
2

)

(

bx,1 + 1
2

) (

bx,2 + 1
2

)+

6α2 (1 − α)2 +

(1 − α)4 (by,1+
3
2 )(by,2+

3
2 )

(by,1+ 1
2 )(by,2+ 1

2 )

}

/

[

α4 + 2α2 (1 − α)2 + (1 − α)4
]

(10)

where bx,1,bx,2; by,1, by,2 are G-function parameters
associated with SIRP random variables X; Y respec-
tively.

Based on b1, b2 data for the TIMIT corpus presented
in Section III. we compute the probability that the kur-
tosis of a mixture of speech signals (modeled with G-
function SIRPs) is less than the kurtosis of both indi-
vidual speech signals. Computing this probability will
give us a robustness measure regarding the kurtosis-
based speech separation algorithm in which the criti-
cal assumption must be satisfied. Mathematically, we
must estimate the probability, P {κZ < min (κX, κY)}.
In order to estimate this probability, for each pair of
TIMIT speakers and associated b1, b2 SIRP parame-
ters, we compute (9) for each individual speaker and
(10) for the mixture with fixed α. We count the num-
ber of pairs which satisfy the critical assumption and
divide by the total number pairs. We repeat this pro-
cedure for a variety of mixing ratios. The results
are illustrated in Fig. 6. In addition, we repeat the
same robustness measure using 100 actual speech sig-
nals from the TIMIT corpus (Fig. 6). We note from
Fig. 6, that the robustness measure using the SIRP
model provides a rough lower bound to the robustness
measure using actual speech signals. The measures in-
dicate the kurtosis-based separation algorithm will be
mostly successful in separating out both speech sig-
nals when the mixing ratio is approximately equal. At
extreme mixing ratios the algorithm will not be as suc-
cessful, however, we note that at the extreme mixing
ratios, one signal already dominates and is therefore
almost naturally separated.
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V. Conclusion

In this paper we have reviewed the use of spheri-
cally invariant random processes to model speech sig-
nals and the G-function description of the model. Us-
ing the TIMIT speech corpus of 630 American-English
speakers, we have characterized the G-function param-
eter plane. As an example illustrating the use of this
characterization, a robustness measure associated with
a recent co-channel speech separation algorithm was
computed.
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