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Abstract
Speaker verification (SV) systems that employ maximum a pos-
teriori (MAP) adaptation of a Gaussian mixture model (GMM)
universal background model (UBM) incur a significant test-
stage computational load in the calculation of a posteriori prob-
abilities and sufficient statistics. We propose a multi-layered
hash system employing a tree-structured GMM which uses
Runnalls’ GMM reduction technique. The proposed method is
applied only to the test stage and does not require any modifica-
tions to the training stage or previously-trained speaker models.
With the tree-structured hash system we are able to achieve a
factor of 8× reduction in test-stage computation with no degra-
dation in accuracy. Furthermore, we can achieve computational
reductions greater than 21× with less than 7.5% relative degra-
dation in accuracy.
Index Terms: speaker recognition, gmm reduction, clustering
methods, tree structures

1. Introduction
In recent literature, there has been a significant amount of re-
search aimed at improving the efficiency of speaker recognition
systems (SR). In general, most of the recent research in efficient
SR can be categorized by improvements in one of three layers:
frame layer, Gaussian layer, and utterance layer [1]. Typically,
within the frame layer, the algorithms focus on reducing the
frame rate by using some method to choose MFCC feature vec-
tors to discard. Within the Gaussian layer, the goal is to reduce
the computational complexity required to score each input fea-
ture vector against the GMM-UBM or speaker dependent GMM
[1]. Finally, there is a set of utterance/speaker level algorithms
which includes reducing the search space of individual speak-
ers in SR systems [2, 3], fast utterance scoring [4], or efficiently
compensating for channel/scoring effects [5].

There exists a substantial amount of research in the realm
of reducing the computational burden within the Gaussian layer
which is the focus of this paper. Some of the earliest research
was directed at determining the effects of simply using GMMs
with fewer components. For example, McLaughlin et al. [6]
studied the effects of varying model orders of as little as 16
components up to 2048 components achieving less that 1% ab-
solute degradation with a 4× processing gain.

Auckenthaler and Mason [7] used Gaussian selection to re-
duce the number of Gaussian component densities that each fea-
ture vector was scored against. In the paper, the authors de-
scribed three different methods for performing Gaussian selec-
tion. These methods relied on creating a smaller model (GMM)
called a hash model and a shortlist (or mapping) between the
components of the hash model and the components of the orig-

inal GMM-UBM. The authors achieved “small degradation”
with a computational reduction by a factor of 16.

Another approach to reducing the number of Gaussian com-
ponents involves using hierarchical Gaussian Mixture Models
(HGMMs) such as was done by Xiang and Berger [8]. In their
system, the researchers investigated HGMMs with up to four
layers where each layer represents a GMM of varying reso-
lution. Fast scoring is achieved by scoring each input feature
vector against a lower resolution GMM, whose components are
linked to components in the next higher resolution layer GMM.
The structural UBM (a HGMM) is searched by iteratively fol-
lowing the highest scoring components and their children for
each layer. The structural GMM (SGMM) for the target speaker
is scored using only the path that was taken in the search down
the SBM. Finally, a decision is made using a neural network
that processes the scores from different layers achieving a 17×
processing reduction with 5% relative degradation.

A significantly different approach was taken by Ye and Mak
who employed discrete densities for fast GMM computation. In
[9], the authors examined using scalar quantization and discrete
densities. Each dimension of the input feature vector is first
scalar quantized to a codeword. These codewords are used to in-
dex into a codebook containing pre-computed discretized prob-
abilities. The authors investigated using both a high-density
discrete model (HDMM) and a discrete mixture model (DMM)
where the former is a single discrete density and the latter is a
mixture of discrete densities. The HDDM method achieved a
speedup by a factor of 30 with a 1.5% absolute degradation in
EER. In [10], Ye and Mak extended the work to use subvector
quantization of the feature vectors.

In [11], Mohammadi and Saeidi used a scalar sorting
function to select Gaussian components for likelihood calcu-
lations. In their work, the authors sorted the components of
the GMM-UBM with the goal that “neighboring” feature vec-
tors would provide almost neighboring values of st where st =
f (x1, x2, . . . , xD) is a scalar function. In their paper, the au-
thors used a sorting function f(·) which was simply the sum
of the input vector reducing computational costs by 3.5× with-
out degradation. In [12], Saeidi et al. extend upon this work
by using a slightly more complicated sorting function and the
implementation of two orthogonal functions.

A somewhat elegant approach in its simplicity is the Gaus-
sian prediction method used by Tydlitát et al. [13]. In Gaus-
sian prediction, given the best scoring component for the cur-
rent feature vector, an attempt is made to predict a subset of
Gaussian components against which the next feature vector will
be scored. In their work, the authors reduced the number of
components for scoring and adaption by a factor of four.

More recently, in [14], we presented a hash based sys-



tem similar to [7] but using a powerful Gaussian-reduction ap-
proach to construct the hash. We demonstrated that by training a
hash model and shortlist mapping using GMM reduction as de-
scribed by Runnalls in [15] that we could achieve a factor of 2.8
reduction in a posteriori calculations without loss in accuracy.
The hash model system allowed us to intelligently reduce the
complexity of our statistical scoring of feature vectors. Within
the hash based system the computational reduction was limited
due to the fact that the hash model itself requires some compu-
tational burden.

In this paper we extend our use of Gaussian reduction to
form tree-structured GMMs to further reduce the computation
required for calculating the sufficient statistics. We show that
using a tree-structure we are able to achieve significantly more
reduction in computation while incurring a small degradation in
recognition performance.

The remainder of the paper is organized as follows. In
Section 2, we review training hash GMMs and shortlists us-
ing GMM reduction. Next, in Section 3, we describe extending
the GMM reduction method to form tree-structures. In Sec-
tion 4, we present the performance of the GMM-tree based sys-
tem. Section 5 presents our conclusions and thoughts on future
work.

2. Hash GMM System
2.1. Hash System Description

The goal of using a hash GMM with a shortlist mapping to com-
ponents within the GMM-UBM is ultimately to reduce the total
number of component likelihood calculations and the number of
components used in the update of sufficient statistics. It should
be noted that the hash GMM effectively represents a lower res-
olution version of the UBM. Figure 1 shows the principle of us-
ing a hash system. Individual input feature vectors, xt, are ini-
tially scored against the component densities of the hash GMM
with model parameters {wh

i ,µ
h
i ,Σ

h
i } representing component

weight, mean vector, and covariance matrix respectively and
where the superscript denotes hash parameters. Based on these
probabilistic scores, a subset of component densities within the
GMM-UBM having the model parameters {wi,µi,Σi} are se-
lected for scoring and adaptation. The components in the UBM
are selected with the shortlist mapping.

The GMM-UBM is trained with M multivariate Gaussian
component densities while the hash GMM is formed with N
components where N < M . After scoring a feature vector
against the hash model, the B < N highest scoring hash com-
ponent densities are identified and their shortlists are used to
select the components within the UBM.

2.2. Hash GMM and Shortlist Training

The method we use to train our hash GMM is described in [14]
and is based on GMM reduction [15]. This approach succes-
sively merges pairs of mixture components, replacing the pairs
with a single Gaussian component. The criterion for select-
ing pairs to merge is based on minimizing the Kullback-Leibler
(KL) divergence between the GMM pre-merge and the resulting
GMM post-merge. Although a closed form solution does not
exist for calculating the KL divergence between two GMMs,
[15] presents an upper bound on the divergence between the
pre-merger and post-merger GMMs and it is this upper bound
that the algorithm attempts to minimize. Letting λi and λj rep-
resent the ith and jth component densities of a GMM, this KL
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Figure 1: Single Layer Hash GMM System Trained using Gaus-
sian Mixture Reduction [14]

divergence is bounded by [15]

KL(λi||λj) ≤
1

2
[(wi + wj) log det (Σij)

−wi log det (Σi)− wj log det (Σj)] (1)

where KL(λi||λj) is computed for every pair of component
members with i 6= j within the premerged GMM.

The two components that minimize KL(λi||λj) are se-
lected for merger and are replaced by the moment-preserving
merge [15]

wij = wi + wj

µij = wi|ijµi + wj|ijµj (2)

Σij = wi|ijΣi + wj|ijΣj

+ wi|ijwj|ij
(
µi + µj

) (
µi + µj

)T
where the component weights have been normalized such that
wi|ij = wi/(wi + wj) and wj|ij = wj/(wi + wj).

This process of iteratively selecting components to merge
and calculating the moment preserving merge is continued until
the merged GMM is reduced to contain the desired number of
reduced mixture components. At each stage of the merging pro-
cess, a record is kept of which components are merged to later
be used as a shortlist between the reduced (hash) GMM and the
components of the GMM-UBM.

The GMM reduction consists of the following two steps re-
peated M −N times:

1. Calculate bound: Calculate the upper bound (1) on the
divergence for all pairs of components i and j within the
merged GMM from the last iteration.

2. Merge Pairs: Choose the two pairs of components with
indices i and j that minimize the bound and merge
the pair using the moment preserving merger of their
weights, mean vectors, and covariance matrices (2).

3. GMM Tree-Structures
With a single layer hash system, the upper bound of the process-
ing gain is

√
M
2

–assuming uniformly-distributed cluster sizes.
We can reduce the number of components in the UBM selected
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Figure 2: Tree-Structured Hash GMM System with each Layer
Trained Using Gaussian Component Reduction of the Compo-
nents of the Higher Resolution GMMs

for scoring by choosing a larger hash model. Though this de-
creases the number of UBM components for scoring, the effect
is to increase the number of components in the hash for scoring.
Within a single layer hash system, the best case processing gain
can be achieved when the number of components within each
cluster is the as same the number within the hash model.

Algorithm 1: Recursive Tree Training Algorithm
Input: GMM components {wi,µi,Σi} passed in from

previous layer (or UBM components for top
layer), N , and remaining number of layers LR

Output: multi-layered GMM tree structure
Perform GMM reduction as in Section 2.2 using
{wi,µi,Σi} creating C clusters ;
if LR = 0 (last layer) then

return GMM clusters from current layer ;
else

LR = LR − 1 ;
for 1 ≤ cluster (node) ≤ C do

if Number of components associated with
current node and layer is less than C then

Continue to next node ;
else

Call Recursive Tree Training Algorithm
with {wk,µk,Σk}, C, and LR where k
indicates components associated with
current node and layer ;

end
end

end

Extending our hash system to a multi-layered tree-
structured system such as depicted in Fig. 2 allows us the op-
portunity to obtain even greater reduction in likelihood calcu-
lations. In building our tree structure, we have attempted to
create a somewhat homogenous structure in which each parent
node contains the same number of children C.

The tree forming algorithm, a recursive algorithm, which
is performed once in training. is given in Algorithm 1. The
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Figure 3: Single layer vs tree-structured hash. The tree-
structured hash has higher computational reduction or less
degradation in accuracy for fixed computational reduction.

algorithm is recursively called until L layers have been created.

4. Experiments and Results
We have performed our experiments using the NIST2005
speaker recognition evaluation (SRE) corpus [16]–eight-
conversation training and one-conversation test. The UBM
was trained using data from Switchboard II Phase 1 [17],
Switchboard Cellular Part 2 [18], and the OGI National Cel-
lular corpora [19]. Cohort speakers for the GMM supervec-
tor based SVM models were drawn from the Fisher English
corpora [20, 21]. For front end processing, we calculated 13-
dimensional MFCC feature vectors every 10 ms using a 20 ms
Hamming window. The frequency content was limited to the
range of 300-3140 Hz. These feature vectors were processed
with RASTA filtering before delta-cepstral coefficients were
computed to create 26-dimensional feature vectors that were
0/1-normalized. These feature vectors were then used to adapt
a 512-component gender-independent UBM.

With our baseline system we achieved an equal error rate
(EER) of 10.71%. Because we are neither employing chan-
nel/session variability such as nuissance attribute project (NAP)
nor are we applying score normalization such as zt-norm, we
achieve degraded performance with respect to those systems
that do. While we would expect our baseline system to perform
better with these enhancements, we have chosen to forgo them
in order to perform our simulations in a more timely manner.

In the training stage, supervectors for the cohort speakers
as well as well as those calculated for the target speaker models
were calculated using MAP adaptation without using a hash-
tree front-end. During the test stage, different tree structures
were evaluated by varying both the number of clusters per node
and number of layers.

The relative change in EER as a function of the computa-
tional reduction factor of total a posteriori probability calcu-
lations performed–including both the UBM and tree nodes–is
shown in Fig. 3 and Table 1. The results for a single hash layer
system, such as in [14], are depicted by squares in Fig. 3 and
rows with L = 1 in Table 1. The other results correspond to
tree-structured GMM systems. There are two key observations
that can be made with respect to the performance difference be-
tween a single layer and a tree-structure. First, with a tree struc-
ture we are able to achieve significantly more reduction in com-
putation. Second, for comparable computational reductions, the



L C B
Reduction
Factor ∆EER %

9 2 1 24.93 17.97
8 2 1 23.47 18.30
4 4 1 26.46 17.51
4 4 2 4.53 0.45
3 8 1 21.38 7.31
3 8 2 8.31 0.92
3 8 3 4.01 -0.94
2 16 1 15.27 10.60
2 16 2 9.17 1.38
1 8 1 5.96 5.53
1 16 1 9.72 7.37
1 32 1 10.60 11.06

Table 1: Results of SV system using the proposed tree-
structured hash. For the (3,8,3) parameters, there is a 4× com-
putational reduction with no loss in accuracy and for the (3,8,1)
parameters there is a 21× computational reduction with only a
small reduction in accuracy.

tree-structure has significantly less degradation than the single
layer hash system.

Analyzing the tree-structure results in Table 1 (L > 1), for
the (3,8,3) parameters there is a 4× computational reduction
with no loss in accuracy (actually there is a small improvement
in EER) while for the (3,8,1) parameters there is a 21× compu-
tational reduction with a 7.31% relative loss in EER. To wit, the
proposed method is applied only to the test stage and does not
require any modifications to the training stage or previously-
trained speaker models.

5. Conclusions and Future Work
We have proposed a tree-structured hash GMM system based
on Runnalls’ GMM reduction technique, for reducing test-stage
computation in a SV system. As compared to to a single-layer
hash, we are able to achieve greater reductions in computation
for a fixed accuracy. For example, we are able to achieve a
4× computational reduction with no loss in accuracy and as
much as 21× computational reduction with a small relative loss
in EER. The proposed method is attractive from an implemen-
tation point-of-view in that it is applied only to the test stage
and does not require any modifications to the training stage or
previously-trained speaker models.

Our future work includes using the multi-layers of the tree-
structure to form a multi-resolution supervector that use intra-
layer a posteriori probabilities to MAP adapt the GMMs of the
hash layers to create supervectors for each layer. Other work
may include using a session variability compensation technique,
such as nuisance attribute projection, to reduce the variability
between normal supervectors and those created using a hashing
system.

Other future work includes adapting the method discussed
in this paper to calculate the sufficient statistics in a joint factor
analysis [22] or total variability system [4].
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