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Abstract

In this paper, we extend the work by Ogihara, et al. to discrimi-
nate between human and synthetic speech using features based
on pitch patterns. As previously demonstrated, significant dif-
ferences in pitch patterns between human and synthetic speech
can be leveraged to classify speech as being human or synthetic
in origin. We propose using mean pitch stability, mean pitch sta-
bility range, and jitter as features extracted after image analysis
of pitch patterns. We have observed that for synthetic speech,
these features lie in a small and distinct space as compared
to human speech and have modeled them with a multivariate
Gaussian distribution. Our classifier is trained using synthetic
speech collected from the 2008 and 2011 Blizzard Challenge
along with Festival pre-built voices and human speech from the
NIST2002 corpus. We evaluate the classifier on a much larger
corpus than previously studied using human speech from the
Switchboard corpus, synthetic speech from the Resource Man-
agement corpus, and synthetic speech generated from Festival
trained on the Wall Street Journal corpus. Results show 98% ac-
curacy in correctly classifying human speech and 96% accuracy
in correctly classifying synthetic speech.

Index Terms: Speaker recognition, Speech synthesis, Security

1. Introduction

State-of-the-art text-to-speech (TTS) systems are capable of
generating high-quality, natural sounding speech using small
amounts of non-ideal speech data from a targeted person [1],
[2]. These systems therefore may pose a risk in speaker recog-
nition (SR) systems. In particular, system access through voice
authentication may be vulnerable through attacks using speech
synthesizers. Prior research into the problem of imposture from
synthetic speech and vulnerability of SR systems to synthetic
speech can be found in [3-6]

In [7], Ogihara, et al. proposed to discriminate between
human and synthetic speech using features extracted from the
pitch pattern'. The pitch pattern is calculated as a normalized,
short-range, auto-correlation of a speech signal over a 2-20ms
range. The authors compared the use of a speaker’s time sta-
bility and pitch pattern peak, lower half, upper half, and half
bandwidth as features to discriminate between human and syn-
thetic speech. The research used 100 samples of human speech
from a male subject and generated the synthetic speech using
the method proposed in [3]. Decision thresholds based on time
stability and pitch pattern measures were obtained from 20 hu-
man and 20 synthetic speech samples out of the 100. This pro-
cess was performed on a total of five individuals with the half

UIn [7] as well as this paper, pitch is used synonomously with fun-
damental frequency, Fp.

bandwidth” providing the best average performance of correct
rejection of synthetic speech, ranging from 93.3% to 100%.

In [6], the relative phase shift (RPS) of voiced speech was
used to discriminate between human and synthetic speech for a
speaker verification (SV) application. In this work, the Linguis-
tic Data Consortium (LDC) Wall Street Journal (WSJ) corpus
(283 speakers) was used for human speech and synthetic voices
were constructed for each WSJ speaker. RPS-based feature vec-
tors extracted from both human and synthetic speech were then
used to train a Gaussian Mixture Model (GMM) and classifica-
tion was based on maximum likelihood (ML). The results using
the WSJ corpus were 88% of the synthetic speech was classified
correctly and 4.2% of the human speech was classified incor-
rectly. Although the work used a more sophisticated TTS and a
much larger corpus than [7], training the classifier required de-
velopment of a synthetic voice matched to each human enrolled
in the system which is not practical.

In this paper, we also seek to develop a system which can
accurately classify whether speech is human or synthetic. Un-
like [6], however, we wish to train our system using any avail-
able synthetic speech without regard to whether it is matched to
the human speech used to train the classifier. Thus our system
aims to build a more general synthetic speech detection model
without restrictions on the training data other than we have a
reasonably large number of human speech signal examples and
a reasonably large number of synthetic speech signal examples.
Our approach in this paper extends the work in [7] by 1) using
a novel image processing approach to extract features based on
statistical measures of the pitch pattern, 2) proposing an addi-
tional feature based on jitter, 3) utilizing a classifier based on a
multivariate Gaussian model of the feature distributions, and 4)
evaluating the system using a much larger evaluation corpus.

This paper is organized as follows. In Section 2, we review
the pitch pattern calculation proposed in [7] and in Section 3
describe the pitch pattern features we use in the classifier. In
Section 4, we describe the classifier and various corpora used in
training and testing and provide results. In Section 5, we discuss
our future research and in Section 6, we conclude the paper.

2. Pitch Pattern

The pitch pattern, ¢(¢, 7), is calculated by dividing the short-
range autocorrelation function, 7 (¢, 7) by a normalization func-
tion, p(t, 7) [7]

o(t,7) = . 1)



The short range auto-correlation function is given by
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and is similar to the short-time autocorrelation function for mul-
tiple lag inputs. The normalization function
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is proportional to the frame energy [7].
Once the pitch pattern is computed, we segment into a bi-
nary pitch pattern image through the rule

i = {5 4020w

where 0 is a threshold set to half the pitch pattern peak value
at time ¢. An example pitch pattern image is shown in Fig. 1.
In this paper, we compute ¢(t, 7) for 2 < 7 < 20ms and set

0; = l/ﬂforall t.

3. Feature Extraction from Pitch Pattern

Extracting useful features from the pitch pattern is a multi-step
process illustrated in Fig. 2 and includes 1) silence removal, 2)
voiced/unvoiced segmentation, 3) computation of the pitch pat-
tern, and 4) image analysis. First, silence is removed from the
speech signal using an adaptive voice activity detector (VAD)
[8]. Second, the resulting signal is segmented into voiced and
unvoiced speech using a frame-based zero crossing and energy
detector (20ms frames) which is illustrated in Fig. ?? [9]. Third,
the pitch pattern from voiced speech segments is computed us-
ing (1) and segmented using (4) to form a binary image.

In the fourth step, image processing of the segmented bi-
nary pitch pattern is performed in order to extract the connected
components, i.e. black regions in Fig. 1. This processing in-
cludes determining the bounding box and area of a connected
component which are then used to filter out very small and
irregularly-shaped components. We have observed that very
small and irregularly-shaped connected components are arti-
facts of the speech signal and not useful in feature extraction.
The resulting connected components are then analyzed and used
to compute the following statistics-based features (defined be-
low): mean pitch stability, ©s; mean time stability bandwidth,
up; and jitter, J. Our proposed image processing-based ap-
proach, which determines parameters on a per-connected com-
ponent basis and then computes statistics over the connected
components of the utterance, is in contrast to the features used
in [7].

3.1. Mean Pitch Stability

The pitch stability of connected component, c is the average
value of 7 over the connected component

5= L[[ortel,

where T is the time-support of ¢ and where U and L denote the
upper and lower edges of 7, respectively [see Fig. 1(a)]. The

mean pitch stability is calculated as

1 C
= 5;& (©)

where C' is the number of connected components in the speech
signal. In [7], the authors compute a time stability feature (we
prefer calling this “pitch stability”) through a more complex
process involving several thresholding procedures.
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Figure 1: Segmented binary pitch pattern image from (a) human
speech signal and (b) synthetic speech signal. In both plots the
phrase is “The female produces a litter of two to four young in
November.” Pitch stability S, pitch stability range R., upper
edge 7Y, and lower edge 7" are denoted in (a).

3.2. Mean Pitch Stability Range

The pitch stability range of connected component, c is the aver-
age range of 7 over the connected component

%/C[TU(LL) —TL(t)] dt %)
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Figure 2: Feature Extraction Diagram.

[see Fig. 1(a)]. The mean pitch stability range is calculated as

1 C

In [7], the authors compute time stability bandwidth (we pre-
fer calling this “pitch stability range”) through a more complex
process dependent on peak values in the pitch pattern whereas
our process is simplified by setting §; = 1/+/2 for all ¢ in (4).

3.3. Jitter

The pitch pattern jitter, J is computed as follows. The peak lag
for connected component, c at time ¢ is calculated as

$e(t) = maxe(t,7) ©)

and the variance of the peak lags for connected component, c is
calculated as

o2 = var [qﬁi(t)] (10)

The pitch pattern jitter, J is then the average of the peak lag
variances of the connected components

1 C
J = > ot an

3.4. Comments

In summary, for the voiced segments of a speech signal the seg-
mented binary pitch pattern is computed with (4); image analy-
sis is performed as described in the fourth step; and mean pitch
stability (6), mean pitch stability range (8), and jitter (11) are
computed and used to form the feature vector

x = [us,pr,J]. (12)

Based on informal listening tests, state-of-the-art synthetic
speech is often hyperarticulated which usually correlates to a
larger time stability bandwidth. In addition, because it is diffi-
cult to precisely model human physiological features required
to properly synthesize natural speech, we hypothesize that syn-
thetic speech will also have a different mean pitch stability than
human speech. Finally, we have observed that co-articulation,
the transition from one phoneme to the next, of synthetic speech
occurs more rapidly than in human speech where co-articulation
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Figure 3: Scatter plot of the mean pitch stability, ;s and mean
pitch stability range, ur from speech used in training and eval-
uation. Human speech features [NIST2002 (blue circle) and
Switchboard (green square)] lie in a compact and distinct space
as compared to synthetic speech features [Blizzard Challenge
(red asterisk) and Resource Management (RM)/synthetic Wall
Street Journal (WSJ) (black plus)].

is smooth and relaxed and this difference is captured by the jitter
of the pitch pattern.

Vocal tract features, such as MFCC, have been insuffi-
cient in discriminating between synthetic and natural speech
[10]. Vocal tract features are normally segmental (frame-level),
multi-dimensional features. On the other hand, the pitch pattern
is a scalar time-series sequence—a supra-segmental, long-span
feature across many frames. It is our hypothesis that the co-
articulation or supra-segmental characteristics of the pitch pat-
tern for synthetic speech, may differ from that of natural speech.

In Fig. 3, we show a scatter plot of the mean pitch stability,
s and mean pitch stability range, pr from speakers in corpora
used in the training and evaluation. It is evident that for human
speech (blue circles and green squares), these features lie in a
compact and distinct space as compared to synthetic speech (red
asterisks and black plus).

4. Experiments and Results

As part of this research, we collected synthetic speech mate-
rial from a variety of sources as well as directly synthesized
speech. The Festival Speech Synthesis System v2.1 was used
to synthesize speech from 15 speaker models included in the
system which are based on a diphone synthesizer [11]. Bliz-
zard Challenge voices (total of 226), from the 2008 and 2011
competitions [11-13], were obtained from [14]. We used the
WSIJ corpus to construct 283 different speaker models using
a speaker-adaptive, HMM-based speech synthesis system, H
Triple S (HTS). These WSJ HTS speaker models were used
in Festival to generate the synthetic WSJ speech. Resource
Management (RM) voices were obtained from the “Voices of
the World” (VoW) demonstration system hosted at The Cen-
tre for Speech Technology Research [15]. RM speaker mod-
els were generated using a speaker-adaptive HTS similar to the
WSJ speaker models [1].



For the synthetic speech used in training the classifier,
we used the pre-built Festival voice models to synthesize the
ten standard, phonetically-balanced TIMIT sentences beginning
with, “She had your dark suit in greasy wash water all year....”
This resulted in 15 synthetic speech signals that are 15-30s in
duration. The Blizzard Challenge synthetic speech utterances
were limited to the first 30s of speech and resulted in 152 and
59 speech signals from the 2008 and 2011, respectively com-
petitions. For the human speech used in training the classifier,
we used the NIST2002 corpus (total of 330 speakers) with each
signal approximately 30s in length.

We evaluated the classifier using human speech from the
Switchboard corpus (352 speakers) and synthetic speech (518
synthesized voices) from the synthetic WSJ voices [2], [5] and
the synthetic RM voices, as noted above [15]. The synthetic
WSJ voices were generated using the TIMIT sentences and the
synthetic RM voices uttering, “Finally a little girl did come
along and she was carrying a basket of food.” Speech corpora
usage is summarized in Table 1.

Table 1: Speech corpora used for training and testing the classi-
fier

| [| Training | Testing |
Human NIST2002 Switchboard
Synthetic || Blizzard 2008/2011, WSJ, RM

Festival pre-built voices

Feature vectors in (12) are extracted from human and syn-
thetic training speech. The distribution of synthetic speech fea-
ture vectors is modeled as a multivariate Gaussian distribution
with a diagonal covariance matrix. A decision threshold is then
set by computing the likelihoods of the training feature vectors
and adjusting for combined highest accuracy. Using the test
speech, results show classification accuracy of 98% for human
speech and 96% for synthetic speech. The results for classifi-
cation of synthetic speech are better than those presented in [6]
but without the complication of requiring development of a syn-
thetic voice matched to each human enrolled in the system. In
addition, our results are as good or better than [7] but using a
much larger evaluation set and a classifier trained with a corpus
different than that used in testing.

5. Future Work

The feature vector in (12) is extracted from the pitch pattern
for voiced segments within an utterance. These vectors are
then collectively modeled as a Gaussian distribution. Our fu-
ture work includes modelling the vectors at the phoneme-level
where we have observed large separation distances in the fea-
ture vectors for certain phonemes. Classifiers based at the
phoneme-level could result in increased accuracy.

6. Conclusions

In this paper, we have used mean pitch stability, mean pitch sta-
bility range, and jitter as features extracted from image anal-
ysis of pitch patterns for discrimination between human and
synthetic speech. We have developed a classifier based on a
Gaussian distribution of these features. We used pre-built Fes-
tival voices, obtained synthetic voices from the Blizzard Chal-
lenge and human speech from the NIST2002 corpus for train-
ing the classifier. The classifier was evaluated using human
speech from the Switchboard corpus and synthetic WSJ and RM

voices. Results show 98% accuracy in correctly classifying hu-
man speech and 96% accuracy in correctly classifying synthetic
speech.
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