
Mixture Component Clustering for Efficient Speaker Verification

Richard D. McClanahan1, Phillip L. De Leon2

1Sandia National Laboratories, Albuquerque, N.M., U.S.A.
2New Mexico State University, Klipsch School of Elect. and Comp. Eng., Las Cruces, N.M., U.S.A.

rmcclan@sandia.gov, pdeleon@nmsu.edu

Abstract

In speaker verification (SV) systems based on a support vec-
tor machine (SVM) using Gaussian mixture model (GMM) su-
pervectors, a large portion of the test-stage computational load
is the calculation of the a posteriori probabilities of the fea-
ture vectors for the given universal background model (UBM).
Furthermore, the calculation of the sufficient statistics for the
mean also contributes substantially to computational load. In
this paper, we propose several methods to cluster the GMM-
UBM mixture components in order to reduce the computational
load and speed up the verification. In the adaptation stage, we
compare the feature vectors to the clusters and calculate the a
posteriori probabilities and update the statistics exclusively for
mixture components belonging to appropriate clusters. Our re-
sults, demomstrate that (on average) we can, reduce the number
of a posteriori probability calculations by a factor up to 2.8×
without loss in accuracy.
Index Terms: speaker recognition, clustering methods

1. Introduction
Speaker recognition (SR) can be broken down into two tasks:
speaker verification (SV) and speaker identification (SI). In SV
systems, the task is to determine whether a person is who he/she
claims to be. In SI, there is no claim of identity for the unknown
speaker and so the system must determine who is talking from a
set of known speakers. This task must therefore perform a 1:N
classification–one for each of the known speakers [1].

Recent research has examined ways to reduce the required
computation of SR systems without sacrificing accuracy—
which will always be an important factor. Computational reduc-
tion in SR systems, is aimed at the test-stage where fast recogni-
tion or low power consumption (in embedded applications) may
be important factors. Since training a SR system is normally a
one-time, up-front cost, emphasis is not normally placed on fast
training. In fact, it may be argued that increasing training time
for potentially faster test-stage time is an acceptable trade-off.

A number of different methods have been proposed to re-
duce the computation in GMM-UBM SV systems where the
computational bottleneck is in the number of a posteriori prob-
ability calculations required in the log likelihood ratio. For ex-
ample, a method was proposed to reduce the number of features
being evaluated by eliminating those with substantial redudancy
[2]. Depending on the corpus and distance measured, the au-
thors were able to achieve little to no performance degradation
with a frame rate reduced by a factor of four. Other researchers
have used hash tables and were able to reduce the computational
burden by creating a shortlist between a smaller hash GMM
and the full component size GMM [3]. The authors achieved
a processing reduction factor of about 6× with “no noticeable

performance degradation.” The approach in [4] was to gener-
ate a structural background model (SBM) and structural GMMs
(SGMM) for the target speakers. The SBM and SGMM were
multilayered GMMs that could be considered GMMs of differ-
ent resolution. The SGMM-SBM method achieved a computa-
tional reduction by a factor of 17 with a 5% reduction in equal
error rate (EER).

The focus of this paper is on how to reduce the compu-
tational load in the SV test-stage of a state-of-the-art, support
vector machine (SVM) using Gaussian mixture model (GMM)
supervectors system [5]. We propose several different meth-
ods of creating a hash GMM. The first method is similar to the
GS1 hash of [3] but with a different method of generating short-
lists which map the component densities from the hash GMM
to components of the GMM-UBM. We use a method based on
the Kullback-Leibler (KL) divergence between the components
of the hash GMMs and the GMM-UBM components to gen-
erate shortlists for the hash GMMs. Two other hash generation
methods we analyze are based on the idea of “GMM reduction.”
Our approach differs from [3, 4] primarily in that we use a new
method of GMM reduction for creating the hash GMM and that
we are using a SVM-based SV system rather than the GMM-
UBM system.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the SV system based on SVM using GMM
supervectors. Next, in Section 3, we present several methods
of clustering the GMM-UBM component densities to create a
hash GMM. In Section 4, we present the results that we have
obtained using these various methods. Finally, we conclude our
paper in Section 5.

2. Speaker Verification Based on SVM
Using GMM Supervectors

In this section, we briefly review the SVM using GMM super-
vectors SV system described in [5].

2.1. SV System Training

Training the SVM SV system is achieved in four steps. The first
step consists of constructing a GMM-UBM using feature vec-
tors, X, from a large collection of background speakers. The
feature vectors are usually composed of mel-frequency cepstral
coefficients (MFCCs) and delta MFCCs. The GMM-UBM is
represented by the model parameters λUBM = {wi,ηi,Σi}
which are the weight, mean vector, and diagonal covariance ma-
trix respectively for the i-th component density where 1 ≤ i ≤
M and M is the number of component densities in the GMM-
UBM.

In the second step, feature vectors are extracted from a tar-
get speaker’s utterance and used to MAP-adapt the mean vec-

tors of the GMM-UBM. It is assumed that we have several ut-
terances available for each target speaker. The MAP-adapted
model is denoted λs,u = {wi,µs,u,i,Σi} where µs,u,i is the
MAP-adapted mean vector for the i-th component density from
utterance u of speaker s.

In the third step, the mean vectors µs,u,i are then
diagonally-scaled according to

ms,u,i =
√
wiΣ

−1/2
i µs,u,i (1)

and stacked to form a GMM supervector for a speaker’s given
utterance

ms,u =

 ms,u,1

...
ms,u,M

 . (2)

The fourth training step involves training a SVM to dis-
criminate the target speaker. The SVM is trained using a linear
kernel [6], with weight and bias parameters an and b. The su-
pervectors for the target speaker are labeled +1 whereas the
supervectors of all other background speakers are labeled −1.
The resulting SVM speaker model is denoted νs = {as,n, bs}
where as,n is the weight of the n-th support vector, bs is the
bias, and n ∈ S and S is set of indices of the support vectors.

2.2. SV System Testing

In the SV test stage, we are given a speech utterance and an
identity claim C. We must decide to accept or reject the claim.
To do so, we extract T feature vectors X = {x1,x2, . . . ,xT }
from the utterance and form a test supervector, mtest following
the same procedure as in steps 2 (MAP adaptation) and 3 (su-
pervector) of the training stage. The supervector is evaluated
against the model SVM by computing

y(X) =
∑
n∈S

aC,nlC,nmT
testmC,n + bC (3)

where lC,n denotes the labels associated with the support vec-
tors and the claim is accepted if y(X) ≥ 0 otherwise it is re-
jected.

2.3. MAP-Adaptation

In the test-stage, MAP-adaptation begins with calculating the
alignment of the training vectors into the UBM by computing
the likelihood function

Pr(i|xt) =
wipi(xt)

M∑
j=1

wjpj(xt)

(4)

where

pi(x) =
1

(2π)D/2 |Σi|1/2
e−(1/2)(x−µi)

T Σ−1
i (x−µi). (5)

Next, the sufficient statistics for the weights and mean vectors
are computed with

ni =

T∑
t=1

Pr(i|xt) (6)

and

Ei(x) =
1

ni

T∑
t=1

Pr(i|xt)xt. (7)

Figure 1: Clustering the components of a GMM-UBM with a
large number of components (blue) into a hash GMM with a
smaller number of components (red)

These sufficient statistics are then used to adapt the UBM to re-
flect the characteristics of the hypothesized speaker. Finally, the
test supervector is formed, (3) is computed, and an accept/reject
decision is made.

3. GMM Component Density Clustering
Within the test stage, a significant portion of the computational
load is required for the calculation of likelihoods in (4) and suf-
ficient statistics in (6) and (7). Clearly, one way to reduce com-
putation time is to not perform the calculations for the entire
set of mixture components since many of these evaluate to near
zero. Effectively, we only calculate the terms in (4), (6), and (7)
for a subset of mixture components, C, that are properly chosen.

We next describe several methods for clustering the compo-
nent densities of the GMM-UBM to create smaller hash GMMs
as shown in Fig. 1. In the illustration, the components of the
original GMM-UBM {wi,ηi,Σi} are combined to form new
component densities {w′i,η′i,Σ′i} within the hash GMM. A
shortlist is created that maps components of the hash GMM to
clusters of components in the GMM-UBM. A small number of
clusters in the GMM-UBM is chosen based on the scoring of
the feature vectors into the hash GMM. Only the components in
these clusters are used to calculate (4), (6), and (7).

3.1. Mapping to Smaller Hash GMMs using KL Divergence

Ideally, we would like the hash GMM to capture similar features
as in the GMM-UBM. In our first method, we propose training
a hash GMM using the same features vectors and methodology
used to train the UBM except that the hash GMM has fewer
component densities than the UBM. For instance, if our GMM-
UBM consisted of 1024 component densities, we would train a
hash GMM with perhaps 32 mixture components using the ex-
pectation maximization method. The components in the GMM-
UBM are then mapped to components within the hash GMM
using the symmetrized KL divergence. For multivariate normal
distributions, this symmetrized KL divergence can be expressed
as

d(f, g) =
1

2
trace

[(
Σ−1

f + Σ−1
g

)
(µf + µg) (µf + µg)

T

+ΣfΣ−1
g + Σ−1

f Σg − 2I
]

(8)

where µf , µg is the mean of f and g, respectively; Σf ,Σg is
the covariance of f and g, respectively; and I is the identity
matrix. Thus, a shortlist can be generated that maps components

from the hash GMM into clusters of components of the GMM-
UBM in which the mapping is determined by minimizing (8)
between the components in the hash GMM and the components
in the GMM-UBM.

3.2. k-means Clustering using Divergence

A second method we propose for creating a hash GMM uses
k-means clustering with symmetric KL as the distance measure
to cluster the component densities of the UBM. Only the com-
ponent densities of the GMM-UBM are needed to perform the
clustering. In the assignment step of the k-means algorithm,
components of the GMM-UBM are assigned to cluster cen-
troids using the symmetric KL divergence.

In the update step of k-means, we calculate the centroids
as expectation centroids [7] using the N components that have
been assigned to the c-th centroid with

µc =
1

N

N∑
n=1

E [xn]

=
1

N

N∑
n=1

µc (9)

and

Σc =
1

N

N∑
n=1

E
[
(xn − µc) (xn − µc)

T
]

=
1

N

N∑
n=1

Σn + µnµ
T
n − µcµ

T
c . (10)

We update the component weights by simply summing the in-
dividual weights of the components within the cluster

w′i =

N∑
n=1

wn. (11)

After the k-means algorithm has terminated, we use the
centroids as the components of our hash GMM with weights
determined by (11). Finally the shortlist mapping hash GMM
components to GMM-UBM components is determined by min-
imizing (8) between the components of the UBM and the hash
GMM.

3.3. KL GMM Reduction

Our final proposal for creating the hash GMM uses a method
of merging component densities in the GMM-UBM known as
GMM reduction. Recently, Runnalls [8] proposed a KL-based
approach to GMM reduction. His approach was to successively
merge pairs of mixture components within a GMM, replacing
the pairs with a single Gaussian component that matched the
merged pair up to a second order. Runnalls’ criterion for select-
ing pairs to merge was based on minimizing the KL divergence
between the GMM before the merge and the GMM after the
merge. Although a closed-form solution does not exist for cal-
culating the KL divergence between the two GMMs, the author
does present an upper bound on the divergence and it is this
upper bound that he attempts to minimize. He shows that di-
vergence of the mixture following the merge from the mixture
before the merge is bounded by

B[(wi,µi,Σi), (wj ,µj ,Σj)] =

1

2
[(wi + wj) log detΣij − wi log detΣi − wj log detΣj]

(12)
where B[(wi,µi,Σi), (wj ,µj ,Σj)] is computed for every
pair of component members with i 6= j within the premerged
GMM.

The two components that minimize
B[(wi,µi,Σi), (wj ,µj ,Σj)] are selected for merger
and are replaced by the moment-preserving merge

wij = wi + wj (13)
µij = wi|ijµi + wj|ijµj (14)
Σij = wi|ijΣi + wj|ijΣj (15)

= +wi|ijwj|ij (µi + µj) (µi + µj)
T

where the component weights have been normalized such that
wi|ij = wi/(wi + wj) and wj|ij = wj/(wi + wj).

Our process of iteratively selecting components to merge
and calculating the moment-preserving merge is continued un-
til the merged GMM is reduced to contain the desired number
of reduced mixture components. At each stage of the merging
process, a record is kept of which components are merged to
later be used as a shortlist between the reduced (hash) GMM
and the components of the GMM-UBM.

4. Experiments and Results
We have performed our experiments using the NIST2002
speaker recognition evaluation (SRE) corpus, single speaker
cellular data. The UBM was trained by using data from both
the Switchboard II Phase 1 corpus and the Switchboard Cel-
lular Part 2 corpus. Each training file within NIST2002 was
segmented into 10 utterances and subsequently into 10 super-
vectors for each speaker. For front end processing, we calcu-
lated a 19-dimensional MFCC vector every 10 ms using a 25
ms Hamming window. The frequency content was limited to the
range 300-3140 Hz. The cepstral vectors were processed with
RASTA filtering. Delta-cepstral coefficients were then calcu-
lated using a 5 sample window length. These 19 delta-cepstral
coefficients were concatenated to the cepstral vector to generate
a 38-dimensional vector. Finally these cepstral/delta-cepstral
vectors were processed with feature warping to generate our
feature vectors.

In order to evaluate the efficiency of the proposed cluster-
ing methods, we chose as our metric the average number of
a posteriori probability calculations in (4) versus EER. This
is somewhat conservative in that it accurately reflects the re-
duction in the calculations of (4) for both hash and UBM but
it does not reflect the total reduction the calculation of suffi-
cient statistics (6) and (7). In order to include this further re-
duction, it would be necessary to determine the cost of basic
operations such as addition, multiplication, and division which
can be hardware/implementation specific.

In the case of no clustering, the average number of a pos-
teriori probability calculations per MFCC vector is simply the
number of mixture components within the GMM-UBM. When
clustering is used, the number of a posteriori probability cal-
culations includes both the number of clusters and the number
of components within each cluster selected. This metric is use-
ful because it allows us to compare our clustering to the case
where we would simply use a GMM-UBM system trained with
a reduced number of mixture components. For example if the
average number of a posteriori probability calculations for a
particular clustering scheme was 32 we could compare the EER

50 100 150 200 250
10

12

14

16

18

20

Average Number of a posteriori Probability Calculations

E
qu

al
 E

rr
or

 R
at

e
(E

E
R

)
%

No Clustering
K−Means
Smaller GMM
GMM Reduction

Figure 2: Results for Clustering a 256 Component UBM in both
Training and Testing

50 100 150 200 250
10

12

14

16

18

20

Average Number of a posteriori Probability Calculations

E
qu

al
 E

rr
or

 R
at

e
(E

E
R

)
%

No Clustering
K−Means
Smaller GMM
GMM Reduction

Figure 3: Results for Clustering a 256 Component UBM in
Testing Only

achieved with this system to a GMM-UBM system with 32 mix-
ture components.

In our experiments we simulated clusters of 4, 8, 16, and
32. Further, we simulated scenarios of 1, 2, and 4 as the max-
imum number of clusters chosen. Finally, for all cases we im-
plemented the clustering during the testing stage but simulated
the training stage with and without clustering.

Figs. 2 and 3 show the results of the different clustering
algorithms when the initial UBM consisted of 256 component
densities. In the plots, the solid line represents the case of sim-
ply implementing a GMM-UBM system with fewer component
densities. Clearly, for the majority of cases, the clustering meth-
ods did not perform as well as simply implementing the reduced
size GMM-UBM. The exception was implementing the cluster-
ing using the GMM reduction method as described by Runnalls.

In general, performance is degraded when clustering is used
only for testing (as opposed to training and testing). In par-
ticular, the k-means based clustering method incurred substan-
tial degradations when deviating from matched processing. Of
particular interest is that the Runnalls GMM reduction method
appears to be robust to the case of unmatched processing. In
fact, when we used 16 clusters and processed the 4 clusters
with maximum likelihood, we were able to achieve an EER of
11.87% with on average 92.4 a posteriori probability calcula-
tions. This actually surpassed our baseline EER of 11.97% with
a 256 component UBM. So for this particular case, not only
were we able to reduce the average number of likelihood cal-
culations by a factor of 2.77 but we also improved our EER by
0.84%. This improvement is very minimal and does not neces-
sarily mean that we would generally achieve improved perfor-

mance. The reason we are able to achieve no degradation is that
perhaps the clustering procedure is successfully selecting all the
components needed to perform the MAP adaptation reasonably
well.

In addition to evaluating our method with a 256 component
UBM we also evaluated it with a 1024 component UBM. In this
case, we are able to achieve a factor of 5 reduction with no loss
and a factor of 10 reduction with less than 2.4% loss in relative
performance with respect to the 1024 component UBM.

5. Conclusion
In this paper, we presented a method for reducing the com-
putational load of the support vector machine (SVM) using
GMM supervectors SV system by clustering the component
densities of the GMM-UBM. We compared the results to sys-
tems based on GMM-UBMs with a reduced number of com-
ponent densities. We have shown that in some cases, we were
able to achieve lower EER with fewer a poseteriori probability
calculations than systems with smaller GMMs by clustering a
larger GMM-UBM. Further we have demonstrated that we can
achieve promising results even in the case when clustering is
not performed in the training stage but only in the testing stage.

Future work could include intelligently adjusting the num-
ber of clusters to adapt based on the likelihood scores of the
clusters. Further, it might also be worthwhile to explore poten-
tial gains of using a tree-based structuring algorithm.

6. References
[1] D. A. Reynolds, “An Overview of Automatic Speaker Recognition

Technology,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess. (ICASSP), vol. 4, May 2002, pp. 4072–4075.

[2] G. Sarkar and G. Saha, “Analysis of Distance Measures for
Pre-Quantization before Feature Extraction in Automatic Speaker
Recognition,” in IEEE India Conference (INDICON), Dec. 2009,
pp. 1 –4.

[3] R. Auckenthaler and J. S. Mason, “Gaussian Selection Applied
to Text-Independent Speaker Verification,” in Proc. IEEE Speaker
and Language Recognition Workshop (Odyssey), 2001, pp. 83–88.

[4] B. Xiang and T. Berger, “Efficient Text-Independent Speaker Veri-
fication with Structural Gaussian Mixture Models and Neural Net-
work,” IEEE Trans. Speech Audio Process., vol. 11, no. 5, pp. 447
– 456, Sep. 2003.

[5] W. Campbell, D. Sturim, and D. Reynolds, “Support Vector Ma-
chines using GMM Supervectors for Speaker Verification,” IEEE
Signal Process. Lett., vol. 13, no. 5, pp. 308 – 311, May 2006.

[6] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy, “SVM
and Kernel Methods Matlab Toolbox,” Perception Systemes et In-
formation, INSA de Rouen, Rouen, France, 2005.

[7] T. Myrvoll and F. Soong, “Optimal Clustering of Multivariate Nor-
mal Distributions using Divergence and its Application to HMM
Adaptation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess. (ICASSP), vol. 1, Apr. 2003, pp. 552–555.

[8] A. Runnalls, “Kullback-Leibler Approach to Gaussian Mixture Re-
duction,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp.
989–999, Jul. 2007.

