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Abstract—Provisioning of mobile audio and video services is
a difficult challenge since in the mobile environment, bandwidth
and processing resources are limited. Audio content is normally
present in most multimedia services, however, the user expec-
tation of perceived audio quality differs for speech and non-
speech content. Therefore, automatic voice or speech detection is
needed in order to maximize perceived audio quality and reduce
bandwidth and processing costs. The aim of this work is to find a
low-complexity speech detector, suitable for detection of speech
in a highly-compressed multimedia stream whose audio track
may consist of speech, music, broadcast news, or other audio
content. Finally, two methods for speech/non-speech detection
are proposed and compared.

I. I NTRODUCTION

Massive provisioning of mobile multimedia services and
higher expectations of end-user quality bring new challenges
for service providers. One of the challenges is to improve
the subjective quality of audio and audio-visual services.Due
to advances in audio and video compression and wide-spread
use of standard codecs such as AMR and AAC (audio) and
MPEG-4/AVC (video), provisioning of audio-visual services is
possible at low bit rates while preserving perceptual quality.
The Universal Mobile Telecommunications System (UMTS)
release 4 (implemented by the first UMTS network elements
and terminals) provides a maximum data rate of 1920 kbps
shared by all users in a cell and release 5 offers up to 14.4
Mbps in the downlink direction for High Speed Downlink
Packet Access (HSDPA). The following audio and video
codecs are supported for UMTS video services: for audio these
include AMR speech codec, AAC Low Complexity (AAC-
LC), AAC Long Term Prediction (AAC-LTP) [1] and for
video these include H.263, MPEG-4 and MPEG-4/AVC [1].
The appropriate encoder settings for UMTS video services
differ for various content and streaming application settings
(resolution, frame and bit rate) [2].

End-user quality is influenced by a number of factors
including mutual compensation effects between audio and
video, content, encoding, and network settings as well as
transmission conditions. Moreover, audio and video are not
only mixed in the multimedia stream, but there is even
a synergy of component media (audio and video) [3]. As
previous work has shown, mutual compensation effects cause
perceptual differences in video with a dominant voice in the

audio track rather than in video with other types of audio [4].
Video content with a dominant voice include news, interviews,
talk shows, etc. Finally, audio-visual quality estimationmodels
tuned for video content with a dominant human voice perform
better than a universal models [4]. Therefore, our focus within
this work is on the design of automatic speech detection
algorithms for the mobile environment.

In recent years, speech detection has been extensively
studied [5], [6], [7], [8]. The proposed algorithms for speech
detection differ in computational complexity, application en-
vironment, and accuracy. Our approach is to design a speech
detection algorithm suitable for real-time implementation in
the mobile environment. Therefore, our work is focussed on
accurate and low complexity methods which are robust against
audio compression artifacts.

Our proposed low-complexity algorithm is based on the
kurtosis [9] and High Zero Crossing Rate Ratio (HZCRR) [10]
extracted from the audio signal. The final speech or non-speech
decision is based on hypothesis testing using a Log-Likelihood
Ratio (LLR). The proposed method shows a good balance
between accuracy and computational complexity. Furthermore,
we have proposed a method based on Mel-Frequency Cep-
stral Coefficients (MFCCs) which provides significantly better
accuracy but at the cost of increased computation. Finally,
performance and complexity of these methods are compared.

The paper is organized as follows: In Section 2 we describe
the objective parameters for speech detection. In Section 3
the design of speech detection algorithm is introduced. Perfor-
mance evaluation of proposed algorithm and comparison with
state-of-the-art methods are given in Section 4. In Section5
we conclude the article and describe our future work.

II. A UDIO PARAMETERS

Due to the low complexity requirement of the algorithm,
our investigation was initially focused on time-domain meth-
ods. Initial inspection of the various audio signals show
significantly different characteristics in speech and non-speech
signals (see Figures 1 and 2). Wide dynamic range of the
speech signal (compared to non-speech signals) is clearly
visible.

Both kurtosis and HZCRR features have been used in blind
speech separation [12] and music information retrieval [10].
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Fig. 1. Example of speech signal (time-domain).
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Fig. 2. Example of non-speech (time-domain).

Kurtosis of a zero-mean random processx(n) is defined as
the dimensionless, scale invariant quantity1

κx =
1

N

∑N

n=1
(x(n) − x)4

(

1

N

∑N

n=1
(x(n) − x)2

)2
. (1)

where in our case,x(n) represents then-th sample of an
audio signal. A higherκ value is related to a morepeaked
distribution of samples as is found in speech signals (see
Figure 3) whereas a lower value implies a flatter distribution
as is found in other types of audio signals (see Figure 3).
Therefore, kurtosis was selected as a basis for detection of
speech. However, accurate detection of speech in short-time
frames is not always possible by kurtosis alone.
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Fig. 3. Probability density function of the speech and non-speech audio
samples

1The reader is cautioned that some texts define kurtosis asκx =
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2
− 3 We shall however follow the definition in [9].

The second objective parameter under consideration is the
HZCRR defined as the ratio of the number of frames whose
Zero Crossing Rate (ZCR) is greater than1.5× the average
ZCR in audio file as [10]

HZCRRM =
1

2N

N−1
∑

n=0

[sgn(ZCR(n,M)−1.5ZCR)+1] (2)

where ZCR(n,M) is the rate of then-th, length-M frame
(equation given below),N is the total number of frames,ZCR
is the average ZCR over the audio file. The ZCR is given by

ZCR(n,M) =
1

M

M−1
∑

m=0

1<0 [x(nM + m)x(nM + m + 1)]

(3)
wherem denotes the sample index within the frame and the
indicator function is defined as

1<0(q) =

{

1; q < 0
0; q ≥ 0.

According to our further experiences we use a frame length
of 10 ms and the framing windows are overlapped by50%.
The 10 ms frame length2 contains sufficient audio sample set
for further statistical processing. Moreover, the longer framing
window would increase the calculation complexity and length
of investigated audio sequence nessesary for speech detection.

Figure 4 shows the ZCR curves for both speech and non-
speech signals. The ZCR of the non-speech signal has a small
amplitude range and low variance. The ZCR of the speech
signal, on the other hand, has a wider amplitude range, large
variance, and relatively low and stable baseline with occasional
high peaks. However, many frames of the speech and non-
speech signal have similar ZCRs and thus accurate detection
of speech in short-time frames is also not possible with ZCR
alone.
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Fig. 4. Plot of the ZCR of the speech signal

A. Audio corpus

The training and evaluation of our speech detector was
performed on a large audio corpus. Our corpus consists of
3032 speech and non-speech audio files (see details in Tables
II and I). The speech part of corpus is in the German language

2e.g for SR = 32 kHz framing window contains M = 320 samples



and consists of ten speakers. The non-speech part of corpus
consists of mainly music files of various genres (e.g. rock,
pop, hip-hop, live music). All audio files were encoded using
typical settings for the UMTS environment. Each audio file
was encoded using three codec types at different sampling
rates: AAC, AMR-WB at 16 kHz and AMR-NB at 8 kHz. Due
to limitations of mobile radio resources, bit rates were selected
in range 8–32 kbps. Encoded audio files with insufficient audio
quality were excluded.

TABLE I
SPEECH AUDIO CORPUS

Codec Encoding settings [BR@SR] Number of audio files

AAC 16 kbps@16 kHz 1817
AMR-NB 7.9 kbps@8 kHz 1856
AMR-WB 12.65 kbps@16 kHz 1856

TABLE II
NON-SPEECH AUDIO CORPUS

Codec Encoding settings [BR@SR] Number of audio files

AAC 32 kbps@16 kHz 1169
AMR-NB 7.9 kbps@8 kHz 1172
AMR-WB 12.65 kbps@16 kHz 1176

For purposes of determining speech and non-speech detec-
tion parameters, 2273 audio without dominant voice and 3194
audio with dominant voice files were used in training. These
files were selected from all codecs and encoding combinations.
The rest of the audio corpus was used for performance
evaluation.

Kurtosis and HZCRRM measurements on the training files
is given in Figures 5 and 6. It can be seen that kurtosis is a
better speech indicator than HZCRRM , however, HZCRRM
may be used as an additional indicator.
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Fig. 5. Kurtosis values of speech and non-speech signals.

III. SPEECH DETECTOR

In order to reduce complexity, we propose a two-stage voice
detection algorithm (see Figure 7). For the second stage (when
the kurtosis is greater than the threshold), two solutions are
proposed. The first has significantly lower complexity and is
based on kurtosis and HZCRRM while the second solution,
based on LLR, can provide higher accuracy but at the cost of
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Fig. 6. HZCRRM values of speech and non-speech signals.

higher complexity.
During the first stage, for the first solution based onκ and
HZCRRM , non-speech audio frames are detected by a simple
decision based on whether the kurtosis is less than threshold
(c0) of 4.96 (see Figure 5). The first stage is capable of
recognizing 62.3% of the non-speech frames from our corpus
with a 97% accuracy rate.
Furthermore, for the MFCC based solution, the threshold (c0)
for the second stage was set atκ = 4 using the Least Absolute
Errors optimization technique. All sequences withκ ≤ 4
are recognized as non-speech sequences. By the first stage
are recognized 40% of non-speech sequences from our corpus
with 99.7%. precision.

Fig. 7. Two-stage speech detector

A. Feature Vector based onκ and HZCRRM

For the second stage (first solution), we derive a more
general decision rule based on a hypothesis test (LLR) and
we use both kurtosis and HZCRRM of the frame as elements
in a feature vector

X =

[

κ

HZCRR

]

.

For speech signals, we denote the mean vector for the speech
feature vectors asµs and covariance matrix asΣs and for
non-speech feature vectors, we denote the mean vector asµm

and covariance matrix asΣm. Furthermore, the LLR test is
performed on the first 20 frames, in order to reduce compu-
tational complexity. The log-likelihood ratio is calculated as



follows

∆ =

∑20

i=1
log

{
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2
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m (Xi − µm)T )
}

(4)

If the LLR is greater than the decision threshold,c = c1 = 2.2
(see Figure 7), we declare a non-speech frame otherwise we
declare a speech frame.

B. Feature Vector based on Mel-Frequency Cepstrum Coeffi-
cients

For the second stage (second solution), we consider the use
of MFCCs extracted from the frame as the feature vector.
MFCCs are widely used in speech and audio as a feature vector
in a variety of applications. The algorithm in [13] is used for
calculation of the first 14 MFCCs. Thus the covariance matrix
is 14×14 and mean vector is14×1. The LLR test is performed
on the first 20 frames. The LLR is calculated as

∆ =

∑20

i=1
log

{
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2
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(5)

If the LLR is greater than the decision threshold,c = c2 =
1.04 (see Figure 7), we declare a speech frame otherwise we
declare a non-speech frame.

IV. PERFORMANCE EVALUATION AND COMPARISON

We evaluate both two-stage algorithms: feature vector com-
posed of kurtosis and HZCRRM and feature vector com-
posed of MFCCs. The first algorithm is a relatively low-
complexity solution based on time-domain audio parameters,
κ and HZCRRM . The second algorithm provides a more
sophisticated solution based on MFCCs. The performance and
complexity (measured in terms of computation time) of both
methods was evaluated using 1770 speech files and 1181 non-
speech files. The audio corpora for training and evaluation
were approximately the same size. The overall accuracy of
both proposed methods exceeds 92% (see Table III) for
speech and non-speech content averaged over all codecs. The
precision of second algorithm, however, clearly outperforms
the first but at increased computation cost.

Content Codec κ & HZCRR MFC
Non-speech AAC 92.70% 98.27%

AMR-NB 99.06% 100 %
AMR-WB 85.71% 96.85%

Speech AAC 89.27% 98.51%
AMR-NB 94.94% 100 %
AMR-WB 90.30% 98.21%

Overall 92.78% 98.21%

TABLE III

In order to evaluate complexity, the computation time was
measured using 6091 audio files (3759 speech files, 2332
non-speech files). The algorithms were executed in MATLAB
environment on a Core 2 Duo processor. In order to obtain
the accurate results, the test was repeated ten times. Table

IV gives the average computation times. The first algorithm
is approximately2× faster then the second algorithm. The
efficiency reflects the amount of processed files per second (see
Table IV). The computing time and efficiency results show that
both methods allow for fast detection of speech frames and are
suitable for real time implementation in mobile devices.

Method Time[s] Efficiency [files/s]
κ & HZCRR 106.46 57.20

MFCC 233.89 26.04

TABLE IV
TIME NEEDED FOR CONTENT ESTIMATION

V. CONCLUSION

The goal of this work was to design a speech detector for
mobile environment. The design was focused on accurate,
low complexity methods, which are robust against audio
compression artifacts. Both proposed algorithms show very
good accuracy (92%) and relatively low complexity. However,
the method based on kurtosis and HZCRRM is 2× faster
(lower complexity).

VI. A CKNOWLEDGEMENT

The authors would like to thank mobilkom austria AG for
supporting their research. The views expressed in this paper
are those of the authors and do not necessarily reflect the views
within mobilkom austria AG.

REFERENCES

[1] 3GPP TS 26.234 V6.13.0:”Transparent end-to-end Packet-switched
Streaming Service (PSS); Protocols and codecs,” Mar. 2008.

[2] M. Ries, ”Video Quality Estimation for Mobile Video Streaming,” Doc-
toral thesis, INTHFT, Vienna University of Technology, Vienna, Austria,
Oct. 2008.

[3] S. Tasaka, Y. Ishibashi, “Mutually Compensatory Property of Multimedia
QoS,” in Proc. of IEEE International Conference on Communications
2002, vol. 2, pp. 1105–1111, NY, USA, 2002.

[4] M. Ries, R. Puglia, T. Tebaldi, O. Nemethova, M. Rupp,“Audivisual
Quality Estimation for Mobile Streaming Services,” in Proc. of 2nd Int.
Symp. on Wireless Communications (ISWCS), pp. 173–177, Siena, Italy,
Sep. 2005.

[5] D. Wu, M. Tanaka, R. Chen, L. Olorenshaw, M. Amador, X. Menendez-
Pidal, “A robust speech detection algorithm for speech activated hands-
free applications,” in Proc. of ICASSP’99, pp. 2407–2410, Mar. 1999.

[6] J. Junqua, C. B. Mak, B. Reaves, “A Robust Algorith for Word Boundary
Detection in the Presence of Noise,” IEEE Transactions on Speech and
Audio Processing, vol. 2, no. 3, Jul. 1994.

[7] L. Mauuary, J. Monne, ”Speech/non-Speech Detection forspeech Re-
sponses Systems,” in Proc. of Eurospeech93, Berlin, pp. 1097-1 100,
September 1993.

[8] H. Hermansky, ”Perceptual linear predictive (PLP) analysis of speech,”
Acoust. Soc. Am., vol. 87, no. 4, pp. 1738-1752, Apr. 1990.

[9] M. G. Bulmer, Principles of statistics, New York: Dover Publications,
1967.

[10] L. Lu, H. Jiang, and H. J. Zhang, ”Content analysis for audio clas-
sification and segmentation,” IEEE Transactions on Speech and Audio
Processing, vol. 10, no. 7, Oct. 2002.

[11] C. H. Chen, Signal processing handbook, New York: Dekker, 1988.
[12] P. De Leon, ”Short-Time Kurtosis of Speech Signals with Application

to Co-Channel Speech Separation,” in Proc. IEEE Int. Conf. Multimedia
and Expo, NY, USA, 2000.

[13] D. P. W. Ellis, (2005) PLP and MFCC in Matlab,
Accessed on 10th December 2008. [Online]. Available: http:
http://www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/melfcc.m


