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Abstract—This paper is a contribution to the old problem of
representing a signal in the coordinates of time and frequency. We
review the fundamental Hilbert transform relationship in systems
analysis and argue that the dual relationship assumed in signal
analysis, i.e. spectral single-sidedness is not necessarily justifiable.
Therefore, we abandon the analytic signal and utilize a carefully
parameterized signal model composed of a superposition of
complex, AM-FM components that enables rigorous definition of
instantaneous amplitude and instantaneous frequency. We then
propose the instantaneous spectrum (IS) and prove that it exactly
localizes signal components in an instantaneous bandwidth sense.
The relation of the IS to traditional time-frequency distributions
is discussed and comparative examples are provided. It is shown
that under certain conditions the IS specializes to the Fourier
spectrum and properties of the IS, similar to standard Fourier
transform properties, are given.

Index Terms—Signal analysis, Spectral analysis.

I. INTRODUCTION

LASSICALLY, description of a signal consists of two
Ccomplementary views, that of the time and frequency
domains [1]-[3]. By time, we refer to the value of the
signal as a function of time and by frequency we refer
to the spectrum of the signal as a function of frequency,
determined by the Fourier transform (FT). Historically, the
notion of generalized frequency was introduced around the
dawn of FM communications [4]-[6] and generalized spectra
became of interest around the dawn of the spectrograph [7].
Specifically, Carson proposed [5] a generalization of frequency
termed instantaneous frequency (IF) and Gabor proposed [7]
a framework for joint time-frequency analysis (TFA) leading
to the formal study of time-frequency distributions (TFDs).

TFDs do not fully generalize the notion of frequency as
per Carson. Rather, using the Hilbert transform (HT) and the
so-called “analytic signal” (AS) also introduced by Gabor
[7], Ville speciously combined Carson’s notion of general-
ized frequency, with Gabor’s notion of generalized spectra
[8]. Hitherto, nearly all modern TFA methods build upon
these foundations [9]-[14]. Unfortunately, while unquestion-
ably mathematically correct, these foundations only present
one of the possible perspectives one may take in framing the
TFA problem (see Fig. 1) because generalized frequency is
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not utilized in the broadest way possible. Although Gabor
was aware of Carson’s generalization, he erroneously notes [7]
that Carson’s concept of IF “...is a useful notion for slowly-
varying frequencies, but not sufficient to cover all cases....”
Our position, is that in fact, it is Gabor’s framework which is
not sufficient for IF.

In this paper, we re-evaluate fundamental principles of
TFA by returning to first principles, then develop the concept
of an instantaneous spectrum (IS), in which the notion of
generalized frequency, as proposed by Carson, is utilized to
the fullest extent. Traditional TFD research has evolved to
describe a problem in which we seek a function that describes
the energy of the signal simultaneously in time and frequency
and where mathematical manipulation may be performed in
the same way as with probability distributions and densities
[10]. On the contrary, we propose an alternative TFA where the
problem is to find a set of parameters that will map to both
an instantaneous time-frequency spectrum and a signal, and
where the mathematical description is similar to a coordinate
system. Unlike previous attempts to define an IS, we believe
that ties with the FT and HT, in general, must be severed
and maintained only in special cases. In contrast to TFDs
which require at a minimum one FT and often one HT, our
formulation does not, in general, require the use of the FT or
HT. This leads to a generalized framework for TFA.

frequency

-real

Figure 1. Illustration of the time-frequency analysis problem. Classical
analysis consists of two complementary views: the time domain and the
frequency domain. A complex-valued signal z(¢) (==) and its instantaneous
power |z(t)|? (—) are illustrated along the time axis and the corresponding
complex-valued Fourier spectrum Z (jw) (—) and its energy density | Z (jw)|?
(=) are illustrated along the frequency axis. Placing the time and frequency
axes orthogonal to each other (overloading the time, frequency, and imaginary
dimensions to allow visualization of four dimensions), the question may be
asked: How does one mathematically describe a signal as a function not of t
and w separately, but rather, simultaneously in the space they span?



This paper and our contributions are organized as follows.
In Section II, we provide an original argument that the
assumption of spectral single-sidedness is not fundamental
for signal analysis and in Section III, we briefly review IF
noting that the commonly-accepted definition of IF for a real
signal only holds for a limited class of signals. In Sections
IV and V, we utilize a carefully parameterized signal model
based on complex AM-FM components which ultimately
leads to a general and rigorous approach for parameterizing
and representing a signal. In Section VI, we propose a new
view of signals and argue the importance of choosing the
imaginary signal part in the most general way possible in order
to fully utilize the components. The key theoretical results and
the main contributions of this work are presented in Section
VII where we build upon the prior sections in order to define
a generalized spectrum and provide associated properties. We
point out that the IS may be considered as the ideal Dirac-
type time-frequency representation (TFR) and prove that with
the complex AM-FM model and corresponding IS, exact
localization in time and frequency is inherent. In Section
VIII, we provide comparative examples with TFDs. Finally,
in Sections IX and X we provide a short discussion and
conclusions.

II. HILBERT TRANSFORM AND THE ANALYTIC SIGNAL

Although the HT is considered by some to be the most
important operator in mathematical analysis [15], the appli-
cability in engineering practice is often misunderstood [16].
In Lee and Wiener’s work in the 1930s, the fundamental
HT relationship between the real and imaginary parts of the
immittance function was discovered [16]. The relationship
can be shown as follows [17]. Let the real impulse response
of a system be expressed in terms of even and odd parts
h(t) = he(t) + ho(t). If the system is causal, this implies
ho(t) = sgn(t)he(t) where sgn(-) denotes the sign function
and the frequency response is H(jw) = Hg(jw) + jH1(jw)
where Hg (jw) and H;(jw) denote the real and imaginary parts.
Therefore,

ho(t) =sgn(t) x he(t)
O
iHi(w) = =« Hy(jw)

where the lower line may be re-written as

Hg(jo) do

Hi(jw) = H{Hg(jw)} £ % ) o — w

— 00

where * and f denote the Cauchy principle value of con-
p-v.

volution and integration due to the singularity [1], H{-}
denotes the HT operator, and <£> denotes a FT pair. This
relationship allows one to determine, for example, the group
delay f%AH (jw) from a measurable frequency response
Hpg (jw) of a causal system without actually measuring Hi(jw).

Consider the dual form of the above, but for a general
signal: express the complex frequency spectrum for a signal
z(t) = z(t) + jy(t) in terms of conjugate symmetries as
Z(jw) = Zes(jw) + Zea (jw) with conjugate symmetric part
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Zes(jw) = X (jw) & x(t) and conjugate anti-symmetric part
Zea (jw) = jY (jw) i jy(t) where both x(¢t) and y(t) are
real-valued and both X (jw) and Y (jw) are complex-valued.
If we assume the frequency spectrum is zero for negative
frequencies, this implies Z¢,(jw) = sgn(w)Zcs(jw), then we
write Z(jw) — Zi(jw), z(t) — za(t), y(t) — wa(t), where
subscript a stands for analytic and it follows that

an(jw) = sgn(w) X ch(jw)
tF tF  iF

. j
walt) =~ o oa(t)

where the lower line may be re-written as

n(t) £ Hia() 2 [

— 00

oo

z(7)
T—1

dt

and the so-called AS is defined as

za(t) = x(t) + jya(t). (1)
This allows one to determine z,(¢) from a measurable x(t)
without actually measuring y(¢). Furthermore, expressing in
polar form z, (t) = p, (t)eI®() where p, (t) is the instan-
taneous amplitude (IA), ©, (t) is the phase, and 0, (t) is
the IF [5]. This is exactly the procedure advocated by Ville
[8], following the seminal work by Gabor [7]. Unfortunately,
while a causality assumption for system analysis is physically
justifiable, an assumption of spectral single-sidedness is not
necessarily justifiable for signal analysis. In other words, the
HT relationship is fundamental in causal system analysis [16],
but no such fundamental relationship in signal analysis exists.
This is in contrast to the work of Vakman [18]-[22], who ar-
gued spectral single-sidedness is justifiable for signal analysis
through mathematical constraints he believed to be physically-
justified: (a) amplitude continuity, (b) phase independence on
scale changes and homogeneity, (c) harmonic correspondence
(HC), and (d) phase continuity. With these constraints, in
particular HC', Vakman argued that the imaginary part of the
AS za(t), ya(t) = H{xz(t)} is fundamental in signal analysis.
On the other hand, we believe that HC is overly restrictive.
Consider a system in which the output satisfies the differ-
ential equation describing simple harmonic motion
2

de?
where it is assumed the output of the system z(t) is complex
and the real part is measured as x(t) = a cos(wot + ¢). The
problem is to determine y(¢) such that z(¢) = x(t) + jy(t)
satisfies (2). One solution is given by

z(t) = el (@Wot+a)

where HC implies y(t) = asin(wot + ¢) = H{z(t)} [23].
This solution is spectrally single-sided and thus appears to tie
spectral single-sidedness to a physically-motivated differential
equation. However, for the same measurement x(t)

z(t) = acos(wot + ¢) + B sin(wot + ¢) (3a)
= %(a + B)ei(wot+e) 4 %(a — B)e I wottd)  (3p)

2(t) + wetz(t) = 0 )

"Let 2(t) = ag cos(wot+¢o), then HC forces z(t) =agei(wotteo) [22].
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also satisfies (2) and most importantly, the spectrum of (3) is
not single-sided. Therefore, HC is not a fundamental signal
property and by avoiding the general use of the AS, will not
be imposed in the following sections.

III. INSTANTANEOUS FREQUENCY

In 1937, Carson and Fry formally defined a generalized
notion of frequency, termed IF, based on the phase derivative
of a complex signal [5], [6]. In 1947, Gabor proposed the
AS as a complex extension of a real signal [7]. Ville used
Gabor’s AS and Carson’s IF definition to define the IF of a
real signal [23]. Using the AS to extend Carson’s IF definition
for a real signal, results in a number of useful relationships.
As a result, the AS is almost universally viewed as the correct
way to define the complex signal from the real signal and
subsequently, the correct way to define IA, IF, and phase for
real signals despite the inherent assumption of HC in the AS.

Historically, the concept of IF in engineering literature has
been controversial [24]-[26] and several so-called paradoxes
have been brought to attention [10], [22]. The commonly
accepted definition of IF for a real signal as the derivative
of the phase function of the AS, only holds for a limited class
of signals [8], [10]. The problem with the AS approach was
pointed out by Shekel in [24]. As an example, consider

#(t) = Re{ a(p)ell /v dvtel]

where Re{-} denotes the real operator. There is an infinite set
of pairs of a(t) and w(¢) for which z(¢) may be equivalently
described and hence an infinite set of IA/IF parameterizations.

Although Carson’s definition of IF as the phase derivative
of a complex signal is without question, the HT relation is not
fundamental in signal analysis, and consequently, Gabor’s AS
approach is not necessarily the appropriate way to complex
extend a real signal for purposes of determining the IA/IF.
This leads to the problem we term, complex extension and is
discussed in further detail in Section VI.

IV. THE COMPLEX AM—-FM COMPONENT

In order to exhaustively use the concept of IF in signal
analysis, we must define the most general signal component
which is compatible with Carson’s IF definition. At present,
there is no clear agreed-upon definition of a component or a
monocomponent signal in the time-frequency literature [10],
[23], [27]. Therefore, we propose to define a complex AM—
FM component as any signal that may be expressed using only
a single IA and single IF. Thus, in the most general sense, a
complex AM-FM component is any complex-valued signal
that can be expressed as

V(€)= alt) eXp(j {/;w(T) dt+ qb]) 4)

where ¢ £ (a(t),w(t),$) is a canonical triplet. This defi-
nition is useful because it guarantees differentiability of the
phase function, ensuring both a well-defined IA and IF.
Similar to the work of Picinbono [28], who used canonical
pairs for signal parameterization, the AM—FM component is

parameterized by %. Importantly, this parameterization will
subsequently be interpreted as a type of coordinate system,
i.e. rather than expressing the signal component in terms of a
Cartesian canonical pair consisting of real and imaginary parts
(5(t),o(t)) or a polar canonical pair consisting of amplitude
and angle (a(t),6(t)), we express in terms of an AM-FM
canonical triplet consisting of amplitude, angular velocity, and
an angle reference (a(t),w(t),¢). We use this analogy to
develop a coordinate system for TFA.

In general, a signal requires multiple IAs and IFs for a
meaningful description, thus requiring a decomposition into
multiple complex AM-FM components [23], [29]; a multi-
component signal model will be discussed next. Additionally,
in practice only a real-valued signal is measurable, however,
a complex-valued signal is required for determining the IA
and IF. This complex extension problem will be discussed in
Section VI.

V. THE COMPLEX AM-FM MODEL

We meticulously parameterize the complex AM—FM model
for a complex signal z(t) as a superposition of K (possibly
infinite) complex AM-FM components

K—-1

2(t.7) 2> di(t:; %) (Sa)
k=0

= p(t)ell/ AR drta] (5b)

= p(t)e® (5¢)

= () +jy(t) (5d)

where . = {%,,%1,---,6x_1} is the component set;
¢, £ (ar(t),wk(t), ¢x) is the canonical triplet for the kth
component; and for the signal z(t), p(t) is the IA, ©(t) is
the phase function, Q(¢) = $©O(¢t) is the IF, ® is the phase
reference, x(t) is the real part, and y(t) is the imaginary part.

The kth complex AM-FM component in (5a) is defined as

i, (t§ Cgk) = ag (t)ej[fioc wk () dT""d)k} (62)
= ay(t)ed%® (6b)
= s (t) + jor(t) (6¢)

where for the kth AM—FM component 1y (t), ay(t) is the IA,
0 (t) is the phase function,

wi(t) = —Ok(t) (7

dt
is the IF, ¢ is the phase reference, s (t) is the real part, and
ok(t) is the imaginary part. Rewriting wy(t) = @y + mg(t),
the phase 6,(t) may be expressed in terms of frequency
reference wj; and FM message my(t) as Ox(t) = wit +
fioo mg(T)dT + ¢ or in terms of the phase modulation
message My, (t) as 0y (t) = wit + Mg (t) + ¢r. The geometric
interpretations of the AM—FM component in (4) and the AM-
FM model in (5) are illustrated with the Argand diagrams in
Fig. 2. The AM-FM component can be visually interpreted as
a single rotating vector in the complex plane with time-varying
length and time-varying angular velocity. The time evolution
of the AM-FM model may be interpreted directly in terms of
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Figure 2. (a) Argand diagram of an AM-FM component in (4) at some time instant. Each component, v (¢) (—>) is interpreted as a vector: the IA a(t)
(=) is interpreted as the component vector’s length, the phase 6(¢) (+—) is interpreted as a component vectors’s angular position. Although not shown, the
IF w(t) is interpreted as a component vector’s angular velocity and phase reference ¢ is interpreted as the angular position at ¢ = 0. The real part of the
component s(t) (—>) and the imaginary part of the component o (t) (—>) are interpreted as orthogonal projections of 1(¢). We have included an example
path (—) taken by 1 (¢). (b) Argand diagram of the signal z(¢) (—>) in (5) at some time instant, composed of a superposition of components (—>). The
signal is interpreted as a vector: the IA p(t) (=) is interpreted as the signal vector’s length, the phase ©(t) («—) is interpreted as a signal vector’s angular

position, and although not shown the IF €(¢) is interpreted as a signal vector’s angular velocity. The real part of the signal x(t) (
) are interpreted as orthogonal projections of z(t). We have included an example path (—) taken by z(¢).

of the signal y(t) (

mechanics—where the sometimes misunderstood concept of
IF [25] may be conveniently interpreted as angular velocity.

We assume that the phase and frequency references are
selected at t = 0, ie. ffoo wi(t)dt = 0 which implies
SO m(t) dt = Mi(0) = 0, ¢ = 0,(0), and @ = wy(0) —
m(0). We define a monocomponent signal as any signal
expressed with K’ = 1 and thus with a single canonical triplet.
A multicomponent signal can then be defined as any signal
expressed with K > 1 and thus with a set of canonical triplets.
This definition is useful because it allows a great amount of
flexibility in the signal model while also parameterizing the
signal in a useful way. We emphasize that our use of the
complex AM-FM model is specifically to allow a rigorous
parameterization. In contrast, traditional AM—FM models in
literature, typically refer to specific computational methods for
finding a set of parameters under a specific set of constraints.
A brief review of computational AM—FM models is provided
in Appendix A.

VI. LATENT SIGNAL ANALYSIS

The complex-valued nature of the proposed model leads to
a new, possibly radical view of signals. This view is that all
signals are in fact complex-valued and that in reality, only the
real part x(t), is observed (or measured) and the imaginary

part y(t), is latent, i.e. the act of observation corresponds to
z(t) = x(t) according to x(t) = Re{z(t)}. (8)

We term this view Latent Signal Analysis (LSA). The problem
considered in LSA is to determine a complex signal extension,

) and the imaginary part

i.e. to determine the (total) latent signal z(t) = z(t) + jy(¢)
when the imaginary part y(¢) is hidden, given an observation
2(t). This is analogous to Lee’s problem [16] in determining
H (jw) from the real measurement Hg (jw).

Traditionally, there are two choices for y(t) that are made
in the literature. If one chooses y(t) = 0, then conjugate
symmetry is imposed in frequency, i.e. Z(jw) = Z*(—jw). If
one chooses y(t) = H{x(t)}, then single-sidedness is imposed
in frequency, Z(jw) = 0 for w < 0, which may also be
considered a symmetry in frequency, as we will show. We note
that both of these choices may artificially impose symmetry.

In the context of this work, determining the IA/IF of a signal
becomes that of determining y(¢) and hence z(t) from the
observation (or measurement) of x(¢), in the most general way
possible without imposing unnecessary constraints. In the fre-
quency domain, this problem can alternatively be stated as that
of determining the latent spectrum, Z(jw) = X (jw) +jY (jw)
from X (jw) where both X (jw) and Y (jw) are complex-valued.

A. The Error in Using the Analytic Signal

As discussed in Section II, the AS is almost universally
viewed as the correct way to define a complex signal from the
real signal part, and subsequently, the correct way to define
IA, IF, and phase for real signals [10]. Next, we make clear
that Z(jw) = 0 for w < 0 may be considered as an imposed
symmetry in frequency.

We quantify the error in choosing the AS as the correct
complex signal by first developing the following symmetry
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relations. In the frequency domain, y,(t) = H{x(¢)} implies
the FT of the imaginary signal part

Ya(jw) = —jsgn(w) X (jw)

and it follows that Z,(jw) = 2X (jw)u(w) where u(w) is the

Heaviside unit step function where u(0) = £ [3].

We rewrite the spectrum of an AS in terms of the sign
function u(w) = [sgn(w) + 1]/2 as
Zy(jw) = [1+ sgn(w)] X (jw)
where it can be shown in terms of frequency symmetries
Od{Im{Y,(jw)}} = —sgn(w)Ev{Re{X (jw)}} ~ (9)
and
Ev{Re{Ya(jw)}} = sgn(w)Od{Im{X (jw)}}

where Im{-} is the imaginary operator and Ev{-} and Od{-}

denote the even and odd operators, respectively. The symmetry

imposed by using the AS is apparent in (9) and (10).
Furthermore, with the error energy defined as

B [ ) -y

where y(t) is the true imaginary part, Nuttall derived [30] the
spectral error relation

0
E x / |Z(jw)‘2dw.

In the context of LSA, Nuttall’s definition may be reinterpreted
as the error between the AS z,(t) and the latent signal z(t),

E= /_oo |2a(t) — 2(t)|” at.

Expanding (11), we note that this error can be rewritten in
terms of frequency symmetry relations as

0
E /_ [Ev{Re{X (j)}} - Od{Im{Y (jw)}}

(10)

(1)

+jOd{Im{X (jw)}} +] EV{Re{Y(jw)}}fdw. (12)

Equation (12) shows that the error in assuming the AS may
be completely determined by asymmetries in the even-real and
odd-imaginary parts of both X (jw) and Y (jw). In the case that
y(t) = ya(t), the symmetries in (9) and (10) hold and thus
(12) gives a zero error. When y(t) # ya(t) the error may be
non-negligible.

VII. INSTANTANEOUS SPECTRAL ANALYSIS

We use the term instantaneous spectral analysis (ISA) to
refer to a very general framework for TFA consisting of
three parts: 1) a parameter set, 2) an instantaneous spectrum,
and 3) a signal model. Specifically, in the ISA framework:
1) a signal is represented by a set of canonical triplets
& = {6, 61, - ,CKx-1}, 2) each component set has a
single-valued mapping to an IS ¥ — S(t,w), and 3) each
IS has a single-valued mapping to a signal S(t,w) — z(t).

For the signal model we use the complex AM-FM model
as parameterized in Section V. Thus using terminology by

Flandrin, the complex AM—-FM signal model is a formal model
because the structure of the analyzed signal is incorporated
in the parameterization and is also a formal decomposition
because the construction process is a linear superposition of
time-frequency atoms [11]. In fact, we consider the AM-FM
component parameterized by € in (4) as the most general form
of a time-frequency atom.

In this section, we present the main contributions including
rigorous definition of the IS, properties of the IS, and relation-
ships of the IS to the FT and TFDs. The IS is both moving
and joint because it consists of a local description in both
time and frequency and evolutionary because the coefficients
are explicitly time-dependent [11]. The IS is also “causal” in
the sense of Page and Gupta [31], [32], i.e. the value at time
to does not require the signal for ¢ > ¢y. Although the IS may
be considered a “distribution” in the sense that it describes
the energy allocation in time and frequency, it is not a formal
TFD [33] because it is not obtained via an integral transform.

A. Definition of the Instantaneous Spectrum

We define the IS in the time-frequency coordinates

for a signal expressed with set of canonical triplets
S = {%07%15 e a(gK—l} as

K-1 .00
S(t,w;.7) 2 2 Z/ D (16 B (t — Ty — w (1)) d
k=0 Y~

K—1
=27 Z Vi (t; ‘Kk) 5(w — wk(t)) (13)
k=0

where () and %(-,-) are 1-D and 2-D Dirac deltas
and we have used the well-known sifting property
ffooo f()6(t —t)dt = f(t) and 3(t,w) = 6(t)d(w) [3].
Theorem The IS, S(¢,w;.) maps to signal z(¢;.) with

1 o0

%/ S(t,w; ) dw = 2(t; 7). (14)
Proof:

1 oo
%/_OOS(t7w,Y)dw

1 [ K—1
— l27r Z Vg (t;%k) 6(0.) - wk(t))] dw
k=0

27 J_ o

Kz:lﬂfk (t; 6r)

= z(t;.7). [ |

The IS defined in (13) is a Dirac-type TFR [34] and may
be considered as the ideal TFR [35] in the sense that at any
given instant, a component is represented by a weighted Dirac
delta at the IF and thus, as will be shown in Section VII-D,
is exactly localized.



Theorem When ay(t) = ax, wi(t) = wg, and the discrete
set takes on a continuum, i.e. KX — oo where a; — a(0),
wp — ® € (—00,00), and ¢, — ¢(0), the IS evaluated at
t = 0 specializes to the spectrum obtained using the FT?

wi (t)=wk
Proof: A limiting form of the IS may be expressed as
Klgnoos(t w) ag(t)=ax
Wi (t):wk
K—1
= 1 jlwrt+e]
KlgnOo 2 Z;) age O(w — wy)
0 - .
= 27r/ a(0)elP@l5 (W, — ) do
—o0
= 2rra(w)el Wi, (16)

The corresponding form of the complex AM-FM model is

K—1
2(t) = lim S ap(t)el e @dmrad]
k=0 wi (t)=wp,
- / a(@)ellto@] 4g. (17)

Setting (17) equal to the inverse FT [36] results in

z(t) = % /_z Z(jw)et dw = /00 a(o)e

From Lerch’s theorem [3]

—ZJw ) + NA@) = a(w)

where A/(+) is null function which is ignored for practicality.
We then have

ilot+¢(0)] .

eio(w)

Z(jw)et = 2ra(w)el?@eiwt
and comparison with (16) yields

Z(jw)edt = hm S(t, w)‘ (18)

Koo ag(t)=ax

wi (t)=wk
Equation (18) implies that a limiting form of the IS can be
obtained by multiplying Z(jw) with eJ**. Furthermore, while
Carson’s definition of IF generalizes the notion of frequency,
(18) shows that the IS generalizes the notion of a frequency
spectrum. Finally, evaluating (18) at ¢ = 0 yields

Z(jw) = lim S(O,w)‘

K—oo

ag(t)=ay ]

wy (t)=wp

One consideration with the IS is that in general, it is
not unique for a particular signal under analysis. That is, in
general, there are an infinite number of different sets of canon-
ical triplets ¥ = {%,, %1, -+ ,€Kx-1} and subsequently an
infinite number of instantaneous spectra that can be associated
with a given complex signal. Despite this non-uniqueness, this
framework is advantageous because the inherent ambiguities
allow for flexibility in the model. Furthermore, with the proper
constraints placed on the model, a unique IS will arise.

2Unlike many TFA books, we use the non-unitary, angular frequency FT,
and normalization of signal energy is unnecessary.
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B. Visualization of the Instantaneous Spectrum

For purposes of interpretation and visualization, we extend
(13) by defining a 3-D IS in the time-frequency-real coordi-
nates as

K—1
S(tyw,s;.L) =27 Z wk(t;‘ﬁk) 26(w —wi(t), s
k=0

— Sk<t))

where si(t) is the real part of the kth component, as shown
in (6¢), and it is understood that the sifting property has been
used to rewrite the 3-D Dirac delta as a 2-D Dirac delta
similar to (13). We consider the time-frequency-real space as
the most intuitive space for interpretation. Integrating out the
real dimension, it can be shown that

/ S(t,w,s;.7)ds = S(t, w; 7).

We can visualize S(t,w,s) by plotting wg(t) vs. sg(t)
vs. t as a line in a 3-D space and coloring the line with
respect to |ay(t)| for each component. Thus, the simultaneous
visualization of multiple parameters for each component in
the time-frequency-real space is possible. Further, orthographic
projections of S(t,w,s) yield common plots: the time-real
plane (the real component waveforms), the time-frequency
plane (the IS), and the frequency-real plane (analogous to the
Fourier magnitude spectrum). We consider the 3-D visualiza-
tion as a type of phase space plot as illustrated in Fig. 3.

> ~
frequency .

-real

Figure 3. The 3-D instantaneous spectrum S(t,w,sg (=) for a signal
consisting of a single Gabor atom z(t) = age™ ™ (t=(*)) /(208) gifw) (t=(t))
with real part shown along the time axis ().

The complex AM-FM model is motivated by the geometry
of complex-valued signals and the interpretation of AM-
FM components as rotating vectors in the complex plane as
in Fig. 2. For TFA, a complementary interpretation can be
developed by considering the 3-D IS as a coordinate system
where each component is interpreted as an “illuminated” time-
frequency particle or atom, moving in a 3-D space. The reader
is referred to the supplementary MPEG-4 file (available at
http://ieeexplore.ieee.org) containing an animation illustrating
these concepts. The animation illustrates both of these com-
plementary interpretations.

C. Properties of the Instantaneous Spectrum

In Fourier analysis, one studies how transformations of a
signal affect the spectrum and vice versa. This is possible
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because there is a one-to-one relationship (ignoring null func-
tions) between a signal and the corresponding Fourier spec-

trum, i.e. z(t) & Z(jw). On the other hand, while an IS has
a single-valued mapping to a signal, S(¢,w) — z(t), a signal
has a multi-valued mapping to an IS, z(¢) £ Sc(t,w), kK =
1,2,---. Moreover, while a component set has a single-valued
mapping to an IS, ¥ — S(t,w), an IS has a multi-valued
mapping to a component set, S(t,w) ¥ S, k = 1,2,---.
Therefore, this implies that we should study how transfor-
mations of component sets map to IS transformations and
subsequently, map to signal transformations.

There are two basic types of transformations that can be
discussed: 1) component transformations, i.e. transformations
that affect individual components in the set uniquely and 2)
set transformations, i.e. transformations which affect all signal
components in the set uniformly. We consider the latter type
and adopt the following notation:

yl — Sl(t,w) — Zl(t)
yg — Sg(ttd) — Zg(t)
S = S(tw) = z(t).

We will denote a transformation on the set . of the form

ap(t) — f(ax(t)), wr(t) = g(wk(t)), and ¢p — h(¢r)
where f(-), g(-), and h(-) are three functions as

7 (£(ar(®); g(wr(®), h(@n)):

The following properties then hold.
1) Union (Addition)

WS = Si(t,w) + So(t,w) — 21(t) + 22(t)
2) IA Scale and Phase Shift
S (aag(t),wr(t), or + B) = aelPS(t,w) = aedf 2(t)
3) (Real) IA Modulation
S (r(t)an(t),wi(t), dr) = r(t)S(t,w) — r(t)z(t)
4) IF Shift
Far(t),wr(t) + ws, or) = IS (tw — wy) = eIt 2(t)
5) IA/IF Time-Shift and Re-Reference of Phase
Y(ak(t — to),wr(t —to), ér — [, wi(T) dT)
— S(t—to,w) — z(t —to)
6) Phase Function Negation (Conjugation)
S (ar(t), —wi(t), —r) = S(t, —w) — 2(t)
7) Time Reversal and Frequency Negation
L ar(=t), —wr(=1), ¢x) = S(—t, —w) = 2(—1)
8) Similarity (Time and Frequency Scaling)
7 (an(at). aw(at). du) = 8 (ot 2) = 2(a)

9) Energy Conservation

1 ) ) 2
— ‘/ S(t,w) dw
27.r — 00 — 00

dt = /OO |2(6)[” dt

—00

D. Relation to Joint Time-Frequency Distributions

In the works by Gabor [7] and Ville [8], they sought a
function that describes the energy of the signal simultaneously
in time and frequency, where mathematical manipulation may
be performed in the same way as with densities [10]. However,
the casting of the proposed IS is fundamentally different than
these methods. With the exception of the Dirac delta, the IS
does not rely on distribution or statistical theory. In particular,
there is no use of means, variances, or moments nor joint,
conditional, or marginal densities as illustrated in Fig. 4(a).
The relation of the IS to TFDs, will now be made formal.

1) Moments of Time and Frequency and Localization: In
Gabor’s approach [7] the (global) time duration is given by

o2 = / (t—()*|z(0)]" at (19)
and the (global) bandwidth by
o2 = / (w— (@)°|Z(w)|” dw (20)

o0

where (t) = f_mt\z(t)\th is the (global) mean time and
(W) = [Z wlZ (jw)]* dw is the (global) mean frequency. A
signal consisting of a single Gaussian AM component, i.e. a
Gabor atom z(t) = age™"(t=(1)*/(207)0i(w)(t=(1) " minimizes
the duration-bandwidth product o;20,,2. Thus, Gabor [7] pro-
posed a discrete TFD given by P[n,v] = ay,,, eI~ where a
signal z(t) is represented as a superposition of Gaussian AM
components on a time-frequency lattice

(oo} o0
Z(t) = Z Z an,’u e—ﬂ'(t—nat)z/(QJf)ej(vawt—i-gi),m,). (21)

nN=—00 v=—00

Then the limiting form of (21) as 02 — 0 corresponds to time
domain analysis and as 02 — 0 corresponds to frequency
domain analysis. While Gabor’s approach has generalized
constant amplitude to a Gaussian IA, constant frequency is
not generalized to IF, unlike the AM-FM model in (5) which
generalizes IA and IF. Both (5) and (21) utilize non-orthogonal
components, hence neither can yield a unique representation.

While the Gabor atom is the most localized component
when using the duration-bandwidth product as the measure of
localization, this measure depends only on the instantaneous
power and the Fourier spectrum of the signal—not on a more
general notion of signal localization [12]. Towards a more
general notion, the global concepts from Fourier analysis of
mean and variance in time and frequency as defined in (19)
and (20), may be generalized to local concepts of a continuous
TFD P(t,w) as follows [12]. The variance in frequency at time
t or instantaneous bandwidth is

O‘i‘t = /OO (w— (w)t)zP(w [t) dw (22)
—o0
and the mean frequency at time ¢ is
W= [ wPlas @3)
where the (conditional) ins;antaneous density is
Put) = 2) 24)

P(t)
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-real

(a) (b)

Figure 4. (a) Illustration of a (positive) time-frequency distribution P(¢,w) (W) for a Gabor atom z(t) = age=T(t={1)%/(207) ¢ J{w) (t—(t)) with
instantaneous power |z(t)|2 (—) and energy spectrum |Z (jw)|? (—) shown along the time and frequency axes, respectively. The (conditional) instantaneous
density P(w|t) = P(t,w)/P(t) is highlighted () in the frame (- ) at time ¢. The global descriptors of time duration 2 ( ) and bandwidth o2 (—) are
shown centered at the mean time (¢) and mean frequency (w), respectively. The local descriptor, instantaneous bandwidth O'w‘ ; (=) is shown at {o centered
about the mean frequency at time g, (w)¢,. Note that in the TFD framework, no signal component may have better localization than that of the Gabor atom
in the (global) duration-bandwidth sense and furthermore, the instantaneous bandwidth is non-zero. (b) Illustration of interpreting S(¢,w) (=) as a TFD for
a Gabor atom z(¢) (—) which is shown along the time axis (imaginary and frequency dimensions overloaded). The instantaneous spectrum at to, S(to,w) is
highlighted (—) in the frame () at time ¢o. The energy is centered in time and frequency at the mean time (¢) and mean frequency (w), respectively. The

local descriptor, instantaneous bandwidth ail . (

) is shown at ¢ centered about the mean frequency at time tg, (w)¢,

. Note the instantaneous bandwidth

o2, =0, thus illustrating that the IS exactly localizes the signal component in an instantaneous bandwidth sense. We note that full-size images of all figures

wlt

are included as supplemental material available at http://ieeexplore.ieee.org, in order to allow the reader to more carefully examine the fine details.

where P(t f P(t,w)dw is the marginal density. Al-
though, some authors generalize localization via the local
duration-bandwidth product, ai‘taflw [12], we argue that the
more appropriate measure is simply O’i‘ , because this value
captures the variance in frequency at an instant in time. In
fact, Cohen in [37] also states that ai‘t is an appropriate
localization measure. However, when working with Gabor’s
framework, only components with constant IA can have zero
instantaneous bandwidth [10], [37]—which is not true for the

proposed IS.

Theorem The instantaneous spectrum of a monocomponent
signal (K = 1) exactly localizes the component in frequency at
any time instant, i.e. the instantaneous bandwidth ail , =0Vt

Proof: Let K = 1 and choose the TFD as
P(t,w) = |S(t,w)].

Then using (24) and (23), results in the mean frequency at
time ¢ equal to the IF of the component and hence the IF of
the signal, i.e. (w); = wp(t). Substituting this result into (22)
results in ai‘t = 0 [even when ag(t) # ao]. [ |

We note that while the duration-bandwidth product o,%0,,?
is lower bounded, for both the instantaneous bandwidth 02‘ .
and the local duration-bandwidth product aw‘ tat‘ there exists
no positive lower bound [12]. Thus, exact localization is
possible in the sense that ai‘t = 0 or 03)|t0t2|w = 0, even
if 0,20,,2 # 0. In other words, while the duration-bandwidth
may be an appropriate measure of concentration or localization
in Fourier analysis, it is simply not an appropriate measure of
localization for TFA. These concepts are illustrated in Fig. 4.

2) Time and Frequency Marginals: An alternative approach
that builds on Gabor’s foundations was suggested by Ville [8],

who sought a function P(¢,w) via an integral transform so that
the time marginal yields the instantaneous power

/oo P(t,w)dw = |2(t)|”

—0o0

(25)
and frequency marginal yields the energy density spectrum
One distribution that satisfies (25) and (26), is the Wigner-Ville
distribution (WVD) [8]

WVD(r,w) = / Z(T + ;) z*(7’ - ;>ej“’t dt

where 7 is a time variable. For a monocomponent signal
consisting of a complex linear chirp, the WVD results in a
weighted Dirac delta at the IF. Thus, in Ville’s approach the
complex linear chirp is exactly localized in frequency in the
sense that the instantaneous bandwidth Ji‘t = 0, however, for
other signals including other monocomponent signals, this is
generally not true [8]-[12], [14], [35].

On the contrary, rather than seeking P(t,w) to satisfy (25)
and (26), the proposed IS, by definition, results in somewhat
analogous relationships given in (14) and (15). First, (14) is a
stronger form of (25) because z(¢) may be recovered exactly.
Second, (26) forces alignment with the Fourier spectrum
whereas the IS specializes to the Fourier spectrum via (15).

3) Time-Frequency Distributions: TFDs are generally clas-
sified by which properties they satisfy. Cohen’s quadratic
class are the quadratic TFDs which satisfy the marginals and
preserve time-shifts and frequency-shifts [33]

o= [ A)(3)

x K(t, 0)el @770t o dr dt

P(t,w) dt o | Z(jw) |- (26)
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with free parameter K(¢,0) the kernel function [9].
Choosing K(t,0) = 1 yields the WVD and choosing
K(t,0) = exp|—7(t®)?] yields the Choi-Williams distribution
(CWD) with parameter v > 0 [38]; as v — 0, the CWD is the
WYVD. Similarly, the affine class are the quadratic TFDs which
satisfy the marginals and preserve time-shifts and frequency-
scales. Another special class of TFDs are the linear TFDs,
which include the short-time Fourier transform (STFT) [39]

o0

2(t)w(t — T)e ¥t dt

STFT,/(7,w) = /

— 00

with free-parameter w(t) the window function and the wavelet
transform (WT) [40]
t—
T) dt
c

with free-parameter w(t) the mother wavelet. The WT is
unique among TFDs because it has the linearity, time-shift,
and frequency-scale properties [9]-[12]. However, the inde-
pendent variable ¢ is not strictly a frequency variable but
rather a scale variable and thus will not be considered in the
examples in Section VIII. The spectrogram and scalogram
are the quadratic TFDs defined as the magnitude-squared
of the STFT, SPEC,(r,w) = |STFT,(r,w)|? and WT,
SCAL, (7,w) = |WT,(7,c)|%. Finally, the STFT is unique
among TFDs because it has the linearity, time-shift, and
frequency-shift properties. Therefore, the fact that the IS
satisfies linearity (addition, IA scale, and phase shift) as well as
preserves time-shifts and frequency-shifts, but is not in general
equivalent to the STFT, implies that the IS is not a traditional
time-frequency distribution but is a more general type of time-
Jfrequency representation.

oo

wm@@z/

— 00

(0T we(

VIII. EXAMPLES

In this section, we demonstrate use of the IS for three classic
examples drawn from the time-frequency literature [10]. These
examples show for particular parameter sets the corresponding
instantaneous spectra and give expressions for the associated
signals. Finally, the IS is shown to have distinct conceptual
advantages by way of interpretation when compared against
some of the most common TFDs including the STFT, WVD,
and CWD.

A. Sinusoidal AM Example

Suppose we have a component set .7 consisting of a single
component

o= (oS ). 25 )

where w, and w; are constants. The corresponding IS,
S+ S1(t,w) is illustrated in Fig. 5(a). Suppose we have
another component set .%» consisting of two components

Cgo = (1, Wa, 0)

and

cgl = (1, Wh, 0)

The corresponding IS, . — Sa(t, w) is illustrated in Fig. 5(b)
and it may be clearly seen that S (t,w) # Sa(t,w). Subse-
quently, Sy (t,w) — 21(t) and Sy(t,w) — 22(t) where

z1(t) =2 cos(;(wb — wa)t>ej[§(wb+wa)t] (27a)

29(t) = edwat 4 gdwnt (27b)

are the same sinusoidal AM signal, ie. z1(t) = z2(t).
While mathematically there is no difference between (27a)
and (27b) other than how the signal has been expressed, there
may be reasons to prefer a particular spectrum, S;(t,w) or
Sa(t,w). For example, assuming the signal is latent z (t) =
29(t) — x(t), the human auditory system perceives x(t) as a
single AM tone (corresponding to .#;) if w, and wy}, are not
sufficiently far apart and perceives two distinct constant tones
(corresponding to .%%) if w, and wy, are sufficiently far apart
[41]. Thus, these two perceptions can each be associated with a
particular IS, S; (¢, w) or Sa(t,w), even though the signals are
mathematically identical. For comparison, several TFDs for
the sinusoidal AM signal in (27) are provided in Figs. 5(c)-
(f), with commentary provided in the caption.

B. Sinusoidal FM Example

Suppose we have a component set .%] consisting of a single
component
B
Wm

where wp, wm, and B are constants. The corresponding IS,
S — Si(t,w) is illustrated in Fig. 6(a). Suppose we have
another component set .5 consisting of an infinite number of
components where .5 = {%},} with k =0,1,--- and

6o = <1, wo — Bsin(wpyt),

G, = (Jz(Qﬂ'B/wm), wo + lwn, Kg)

where ¢ = k/2 for even k, £ = —(k + 1)/2 for odd k, and
Je(+) denotes the fth-order Bessel function of the first kind
[1]. The corresponding IS, % — Sa(t,w) is illustrated in
Fig. 6(b) and it may be clearly seen that S (¢, w) # Sa(t,w).
Subsequently, S (t,w) — z1(t) and Sa(t,w) — 22(t) where
Zl (t) — ej[th-‘r% COS(UJmt)] (288.)
2(t) = Y Jo(27B fwy)ellottem) T (28p)

{=—o00

are the same sinusoidal FM signal, i.e. z1(t) = 22(t). Again,
while mathematically there is no difference between (28a) and
(28b) other than how the signal has been expressed, there may
be reason to prefer a particular spectrum, S; (¢, w) or Sa(t,w).
For example, assuming the signal is latent z1(t) = 25(t) —
z(t), the human auditory system may perceive x() as a single
FM tone (corresponding to .#7) [4]. Thus, S;(¢,w) can align
with perception even though Sy (¢, w) is also a valid IS that can
be associated with the same signal. For comparison, several
TFDs for the sinusoidal FM signal in (28) are provided in
Figs. 6(c)-(f), with commentary provided in the caption.
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Figure 5. For the sinusoidal AM signal in (27) the (a) IS with a single AM component, (b) IS with two components each having constant IA and constant IF,
(c) STFT magnitude with a relatively short Hamming window (wideband STFT), (d) STFT magnitude with a relatively long Hamming window (narrowband
STFT), (e) Wigner-Ville distribution, and (f) Choi-Williams distribution with parameter v = 1. For all plots the corresponding real signal is shown along the
time axis. The wideband STFT in (c) shows general energy alignment with S1(¢,w) in (a), i.e. the energy oscillations in amplitude are in sync with one
another and the peak values align in time and frequency. However unlike S (¢, w), the instantaneous bandwidth of the STFT is not zero. While increasing the
window length decreases the instantaneous bandwidth, the end result is a STFT that aligns with (b) not (a). Similarly, we see that the narrowband STFT in
(d) has a general energy alignment with S2(¢,w) in (b), i.e. the energy is constant near frequencies wa and wy,. Although the instantaneous bandwidth about
each component of the STFT is not zero, unlike in Sz (¢,w), it may be made arbitrarily small by increasing the window length. The WVD is shown in (e),
where we see oscillating energy at %Tm as in S1(¢,w) and constant energy at w, and wy, as in Sa(¢, w). In this example, instantaneous bandwidth about
each of the three frequencies is zero. In between the oscillatory peaks, the WVD takes on negative values that align with low IA values of the component
in .1 and furthermore, the negative peaks in the WVD align with sign changes of the IA of the IS shown in (a). The occurrence of negative values in
the WVD is well-established and prevents straightforward and intuitive interpretation. In the CWD shown in (f), as 7 increases from zero the energy in the
oscillatory term in (e) is suppressed at the expense of increased instantaneous bandwidth [38] about the two remaining constant energy terms. Unlike the
IS and WVD, the STFTs and CWD are unable to achieve zero instantaneous bandwidth about the signal components. However, unlike the IS which allows
two representations each with distinct interpretation, the WVD provides only a single representation that may not allow for intuitive interpretation. We note
that full-size images of all figures are included as supplemental material available at http://ieeexplore.ieee.org, in order to allow the reader to more carefully
examine the fine details. All WVDs and CWDs in this paper were computed using the TFSAP toolbox [9].
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Figure 6. For the sinusoidal FM signal in (28) the (a) IS with a single FM component, (b) IS with an infinite number of components each having constant
IA and constant IF, (¢) STFT magnitude with a relatively short Hamming window (wideband STFT), (d) STFT magnitude with a relatively long Hamming
window (narrowband STFT), (e) Wigner-Ville distribution, and (f) Choi-Williams distribution with parameter v = 1. For all plots the corresponding real
signal is shown along the time axis. The wideband STFT in (c) shows general energy alignment with S1(¢,w) in (a), i.e. the energy oscillations in frequency
are aligned with one another and the peak values align in time and frequency. However unlike Si (¢, w), the instantaneous bandwidth of the STFT is not zero.
While increasing the window length decreases the instantaneous bandwidth, the end result is an STFT that aligns with (b) not (a). Similarly, we see that the
narrowband STFT in (d) has a general energy alignment with Sz (¢, w) in (b), i.e. the energy is constant at harmonic frequencies. Although the instantaneous
bandwidth about each component of the STFT is not zero, unlike in Sa (¢, w), it may be made arbitrarily small by increasing the window length. The WVD is
shown in (e) and although there is some energy alignment with (a), the presence of significant cross-terms prevents intuitive interpretation. The CWD shown
in (f) shows general energy alignment with Sz (¢, w). Unlike the IS, the STFTs, WVD, and CWD are unable to achieve zero instantaneous bandwidth about
the signal components. We note that full-size images of all figures are included as supplemental material available at http://ieeexplore.ieee.org, in order to
allow the reader to more carefully examine the fine details. All WVDs and CWDs in this paper were computed using the TFSAP toolbox [9].



C. Gaussian AM Chirp, FM Chirp Example

Suppose we have a component set . consisting of a single
component

—at?
o = (teT, wo + B, 0)

where « and [, are constants. The corresponding IS,
&+ S(t,w) is illustrated in Fig. 7(a). Subsequently,
S(t,w) — z(t) where

—at

2(t) = te™ ¥ eilwor+ 7]

(29)

is a Gaussian AM chirp, FM chirp signal. For comparison,
several TFDs for the signal in (29) are provided in Figs. 7(b)-
(d), with commentary provided in the caption.

IX. DISCUSSION

At its heart, the TFA problem is that of signal representation.
Traditional TFD analysis provides a mathematical framework
which is similar to distribution theory, while ISA provides
a mathematical framework which is similar to a coordinate
system. Formally, the TFA problem may be stated as follows.
When using TFD framework, for a given signal z(¢) or x(t)
find P(t,w) subject to

2(t) Y 2L (1) = P(t,w)

via an integral transform acting on the signal. When using IS
framework, for a given signal z(¢) or () find .¥ subject to

Eqn.(13) Eqn. (14)
[ LY 2

8 S(t,w) (t) 9 2t).

Regardless of the time-frequency framework chosen for rep-
resentation, the problem is not, in general, uniquely solvable
because the problem is under-constrained—providing few gen-
eral mathematical constraints and allowing for infinite degrees
of freedom. This under-determinedness manifests in TFD
analysis as an infinite number of possible TFDs to choose
from based on desirable properties and manifests in ISA as an
infinite number of ways to decompose a signal into a sum of
parts, each leading to a different IS. On one hand, TFD theory
has has seen incremental advances in recent years, however
as Cohen writes [10], “[t]he current state of affairs is that we
do not have a complete theory.” On the other hand, ISA has
unique and powerful advantages over TFD analysis because
the IS is both linear and exactly localizes all signal components
in time-frequency. Moreover, the very act of expressing a
signal z(t) in the appropriate written form z(¢;.%) as in (5),
has the effect of imposing a structure upon the signal, yielding
a parameter set . which uniquely maps to an IS S(t,w; .%).
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Figure 7. For the Gaussian AM chirp, FM chirp signal in (29) the (a) IS with
a single component, (b) STFT magnitude for a moderate length Hamming
window, (¢) WVD, and (d) CWD with parameter v = 1. For all plots the
corresponding real signal is shown along the time axis. The STFT in (b) shows
general energy alignment with S(¢,w) in (a), i.e. the energy peaks align in
time and frequency. However unlike S(t,w), the instantaneous bandwidth of
the STFT is not zero. The WVD shown in (c) is negative in the center of the
figure, when at? + (w — B —wp)?/a < % [10] and the negative peak aligns
with the sign change of the component shown in (a). The CWD shown in
(d) shows general energy alignment with S(¢,w) in (a), i.e. the energy peaks
align in time and frequency.
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Finally, it is important to clearly distinguish between the
ISA theory proposed in this work, which utilizes a complex
AM-FM model, and specific algorithms for computing the
parameters of an AM—FM model, i.e. a signal decomposition.
While both the proposed theory and these algorithms use the
AM-FM model parameters to define a TFR, there is a critical
difference which results in important theoretical implications:
our definition of the IS in (13) includes the appropriate phase
which admits the important properties given in Section VII-C.
These properties hold regardless of the specific algorithm used
for computing the parameters and of the particular signal
under analysis. In fact, any algorithm which produces, either
directly or indirectly, a set of AM-FM model parameters
is compatible with the proposed theory and can be used to
specify an IS possessing the properties we have described.
However, we do not advocate any particular decomposition
because in general there is no single algorithm that can
perform satisfactorily for all signals. Nevertheless, in order
for the proposed IS to be useful in practical applications a
decomposition algorithm is required. Therefore, a brief review
of signal decomposition algorithms [42]-[47] compatible with
the proposed IS is provided in Appendix A.

X. CONCLUSIONS

In this paper, we developed a generalized mathematical
framework for TFA by defining an IS which generalizes the
notion of the Fourier spectrum and in which the notion of
generalized frequency, i.e. IF is utilized to the fullest extent.
Unlike previous attempts to define a generalized spectrum,
we believe that ties with the FT and HT, in general, must
be severed and maintained only in special cases. This is in
contrast to TFDs which require at a minimum one FT and often
one HT. While other Dirac-type TFRs based on an AM-FM
model are common in the literature, our definition utilizes an
appropriately chosen phase term which gives rise to several
convenient mathematical properties. We highlighted that the
AS may artificially impose frequency symmetries and by giv-
ing up the AS, we allowed for alternative complex extensions
and hence alternative IA/IF parameterizations for a real signal
that may be more useful. We utilized a carefully parameterized
signal model based on a superposition of complex AM-FM
components which uses Carson’s original IF definition, but
without the restrictions of the AS. This model allows for a
signal parameterization using a set of canonical triplets, which
are interpreted as the coordinates in time and frequency and
are used to define the IS. Additionally, for interpretation, we
proposed a 3-D IS and a corresponding 3-D visualization. We
discussed the relationship of the proposed IS to the FT and
TFDs, pointing out several important differences.

APPENDIX A
COMPUTATIONAL AM—-FM MODELS

In this appendix we provide a brief review of several algo-
rithms for AM—FM modeling compatible with the proposed IS,
noting that additional reviews may also be found in [48]-[50].
Some of the earliest examples of AM-FM models are those
based on the HT [51]-[56] and the Teager energy separation

algorithm (TESA) [42], [48], [57]-[64]. Both the HT and
TESA permit the estimation of IA and IF of any real signal,
but do not address signal decomposition. As a result, methods
for using the HT and TESA for decomposition have been
proposed.

Another category of AM-FM models are based on ridge
tracking/sinusoidal modeling [43], [65]-[67]. In ridge tracking,
it is assumed that each component appears in a TFD as a
single ridge of energy concentration. Thus, a signal can be
parameterized by tracking its ridges in location, intensity, and
possibly bandwidth. The TFD is usually derived from a STFT
[43] but a more general TFD can also be used [65]. Extensions
of the sinusoidal model have been proposed, such as the
harmonic plus noise and adaptive quasi-harmonic model [66].
Also related to ridge tracking are the empirical wavelet [68]
and synchrosqueezed wavelet transforms [29], [47], [69].

More recently mode decomposition algorithms, such as the
empirical mode decomposition (EMD) and its variations, have
also been used to compute AM-FM parameters [27], [45],
[46], [70], [71]. Alternate formulations of EMD, which are
more mathematically grounded, have also been proposed in-
cluding techniques based on optimization [72]-[74], machine
learning [75], PDEs [76]-[81], rolling balls [82], [83], iterative
filtering [84], [85], and Fourier analysis [86]. Extensions to
EMD include the complex EMD and multi-variate EMD [87]—
[92] and multi-dimensinal EMD [93]-[97]. Other examples of
mode decompositions include, variational (non-linear chirp)
mode [44], [98], [99], local mean [100], intrinsic time-scale
[98], nonlinear mode [101], local characteristic scale [102],
and adaptive local iterative filtering [85] decompositions.
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