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Subband Transforms for Adaptive, RLS Direct
Sequence Spread Spectrum Receivers

Stephan Berner and Phillip L. De Leon, Senior Member, IEEE

Abstract— Adaptive Direct Sequence Spread Spectrum (DSSS)
receivers have advantages over their fixed matched filter counter-
parts including interference cancellation capabilities and simpli-
fication of PN code acquisition. However, convergence using the
LMS algorithm will be very slow in situations with relatively high
SNR and/or a large number of users. The use of the RLS algorithm
will improve convergence speed but at significantly increased com-
putational cost, especially for long PN codes. Unfortunately, com-
putationally efficient, fast RLS algorithms cannot be used because
the filter is updated at the symbol rate rather than at every sample.
In this paper, we propose a subband version of the RLS-based re-
ceiver that utilizes multiple, shorter length adaptive filters. This
approach significantly reduces computation and introduces archi-
tectural parallelism into the system implementation. We design an
optimal subband transform and provide simulation results demon-
strating the improved convergence properties as compared with
the fullband system.

Index Terms— Adaptive direct sequence spread spectrum, par-
allel receiver, subband transforms.

1. INTRODUCTION

DAPTIVE, direct sequence spread spectrum (DSSS)

digital receivers have several advantages over their fixed
matched filter counterparts [1]. These advantages include the
ability to minimize the effects of multiuser interference (MUI),
narrowband interference (NBI), and intersymbol interference
(ISI) without having information about the channel or inter-
ferers. Another advantage of this receiver is that it requires no
information about the pseudo-noise (PN) code, other than its
length and, thus, does not require a code-acquisition phase. It
does, however, require a training period.

In the fractionally spaced (FS) adaptive DSSS receiver illus-
trated in Fig. 1, a received baseband signal 2:(n), which is the
sum of a desired component and interference, is passed through
the adaptive filter w. The adaptive filter length L is equal to
the PN code length times the number of samples per chip. The
filter output is sampled at the symbol rate 7y and compared
with a known training sequence d(n). The resulting difference
or error e(n) is used to adjust the filter coefficients. After a
training period, the coefficient vector is an approximation of the
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Fig. 1. Fractionally spaced adaptive DSSS receiver.

pulse-shaped PN sequence (if the interference is moderate) and
may be fixed or updated in decision-directed mode.

The input correlation matrix R (assuming uncorrelated sym-
bols and no interference) is the outer product of the spreading
sequence [s1, 55 ... s7]T with itself plus a diagonal matrix 21,
representing zero mean, o2 variance, additive white Gaussian
noise (AWGN). Mathematically, the correlation matrix is given
by

S1
52
R= [s1 $2 sp]+ 0’1 (1
Sr,
which has eigenvalues {s? + s3 + -+ + 57 +02,0%,...,0°%}.

The eigenvalue spread is

Amax_3%+3%+"'+3%+0'2 (2)

Amin o?
which can be very large if the noise level is low. Such ill-condi-
tioning will lead to slow convergence of the LMS adaptive filter
which will be a problem in a changing environment. Using the
recursive least squares (RLS) algorithm will improve conver-
gence speed but at significantly increased computational cost
[O(L?)], especially in the case of long PN codes; fast RLS
algorithms cannot be used because the filter is updated at the
symbol rate rather than at every sample [1]. The observation that
the convergence time for LMS-based adaptive DSSS receivers
grows exponentially in the number of users, whereas for RLS,
convergence time grows linearly [1], is also of interest.

In this paper, we turn our attention to the RLS-based receiver
and propose a novel subband, adaptive DSSS receiver for three
reasons. First, a subband receiver may potentially yield a lower
bit error rate (BER) for a fixed training or convergence time.
Second, shorter subband RLS adaptive filters will converge
faster and require less computation than the longer, fullband
equivalent [2]. A faster convergence rate will directly translate
into a reduced training period for the receiver. Third, the sub-
band transform will introduce parallelism into the architecture
that opens up the possibility of a high-speed receiver implemen-
tation using relatively low-speed hardware. This approach for
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introducing architectural parallelism has already been exploited
in binary phase shift keying (BPSK), quaternary phase shift
keying (QPSK), and quadrature amplitude modulation (QAM)
receiver implementations with actual single-chip, 1.2-Gbps
receivers utilizing 125-MHz CMOS technology, which has
been reported in [3] and [4].

The remainder of this paper is organized as follows. In
Section II, we describe the design of the subband, adaptive
DSSS receiver and comment on the advantages of the potential
parallel implementation. In Section III, we design and analyze
an optimal subband transform based on a criterion of mini-
mizing the BER. In Section IV, we provide simulation results,
demonstrating the reduced BERs and faster convergence times.
We also include other subband adaptive DSSS receivers that use
the Discrete Cosine Transform (DCT) and Hadamard transform
as their subband transform. As will be shown, these transforms
perform nearly optimally but at reduced cost, especially in the
case of the Hadamard transform, which has a very simple VLSI
implementation. Finally, in Section V, we give our conclusions.

II. SUBBAND, ADAPTIVE DSSS RECEIVER ARCHITECTURE

A. Proposed Subband Receiver

Subband adaptive filtering has been used in applications such
as acoustic echo cancellation (AEC) in order to address the
problems of slow convergence and high computational com-
plexity associated with long adaptive filters [5]. One approach
is to divide the fullband signal into multiple, lower rate subband
signals that interfere (alias) as little as possible with each other.
High-order analysis filters, oversampling, and adaptive cross fil-
ters can all be employed to minimize aliasing effects. Oversam-
pled subbands are typically used in the AEC application since
subband aliasing severely limits echo cancellation performance
[6]. In another approach, the subband signals are not downsam-
pled, but rather, a parallel set of adaptive sparse subfilters is uti-
lized [7]. With the subband technique, convergence time and
computational complexity can be reduced.

In digital communications, the situation is quite different.
Most important in the adaptive DSSS receiver are the sampling
at the symbol time of the receiver output and the update of the
adaptive filter at the symbol rate [1]. The performance mea-
sure of interest is the BER rather than the mean-square error
(MSE) or other standard adaptive filter measures. Furthermore,
details about the received signal such as the spreading sequence
and pulse shaping are known, as compared with the situation
in AEC, where the input speech signal can only be described
statistically. We can exploit this knowledge to design an adap-
tive DSSS receiver that uses a subband transformation but in a
manner that is much simpler than conventional subband adap-
tive filtering architectures [8].

In the proposed subband, adaptive DSSS receiver illustrated
in Fig. 2, the received signal z(n) is partitioned into length- M
windows and decomposed by a linear transformation T into
M lower rate (subband) signals x1, ...,z [8]. It is assumed
that the number of input samples belonging to one symbol is
a multiple of the window size M. The lower rate signals are
passed through M subband adaptive filters wy, ..., wjs (each
shorter than in the fullband case and updated at the symbol
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rate) and the outputs y1, . .., yps are sampled at the symbol rate
Ts. The resulting signals w1, . .., uys are scaled by gain factors
alf,...,ay toyield vy, ..., var. These signals are then applied
to the inverse transformation T~ and the first element picked
off to yield z;. We use z; to form d(n), which is the estimate of
the transmitted symbol d(n). We will establish criteria for the
design of an optimal transform and the gain factors in the next
section.

We note that symbol rate sampling in the subbands is equiva-
lent to sampling the output of T~ (picking off the first element
z1) due to the fact that the length of one symbol is a multiple of
M .Because of this sampling, much of the computation involved
with T~ can be eliminated since we only need z;. Thus, if we
scale the signals vy, ..., vy by the corresponding elements of
the first row of T~! or, equivalently, let cv,, = [T ']1 1,
the inverse transform block T~! in Fig. 2 can be replaced by
a simple summation, as in Fig. 3. As can be seen in Fig. 3, the
synthesis side of the proposed subband, adaptive DSSS receiver
differs significantly from other subband-based applications [8].
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The vector of desired subband signals is obtained in the
following way. For the fullband receiver, the desired signal is
the convolution of the oversampled, pulse-shaped PN sequence
[weighted by the symbol d(n)] with the matched filter sampled
at the symbol time. Alternatively, this desired signal is the inner
product of the oversampled, pulse-shaped PN sequence with
itself weighted by the symbol. For the subband receiver, the
vector of desired subband signals is the inner product of the
subband version of the PN sequence [s(n) transformed by T']
with itself weighted by the symbol d(n). This is shown in the
lower left parts of Figs. 2 and 3.

B. Parallel System Implementation

One motivation for the subband receiver (in addition to
computational and convergence issues) is to introduce ar-
chitecture parallelism for implementation purposes. Since
the subband adaptive filters are updated at the symbol rate
in exactly the same way as the fullband receiver, a simple
polyphase implementation of the adaptive filter in the fullband
receiver would provide equivalent parallelism but no reduction
in computational complexity. However, the subband receiver
can reduce the requirements of the delay lines associated with
the filters. In the fullband receiver of Fig. 1, we have a single,
long adaptive filter (possibly implemented in polyphase form),
and the associated delay line must operate at the high input
sample rate. In the receiver that has M subbands (Fig. 3), how-
ever, only M delay elements need to operate at the higher rate
since the delay lines associated with the filters operate at 1/M
times the input sample rate. For a long filter or, equivalently,
a high spread-spectrum processing gain, this implementation
advantage can be significant.

IIT. OPTIMAL TRANSFORM DESIGN FOR MINIMUM BER

A. Optimization Criteria

A common assumption about the error signal of an adaptive
filter is that it is white Gaussian noise after convergence [1].
Therefore, the MSE after convergence is directly related to the
BER. In order to understand the effect of the subband trans-
form on BER, we could calculate the minimum MSE (MMSE)
at the receiver output using a general transform and arbitrary
input autocorrelations. As it turns out, the MMSE derived in this
way is not too useful for purposes of optimizing the transform
for minimum error because it is a complicated rational func-
tion involving the elements of the transformation matrix [9]. As
an indirect method toward minimizing the BER, we consider
calculating a lower bound on the receiver’s output SNR (as-
suming subband matched filters) and designing T to maximize
this bound. Later in this section, we will discuss the relation be-
tween maximizing the lower bound and the actual SNR.

B. Additive White Gaussian Noise Case

We begin the transform design by assuming a single user with
AWGN (zero mean, o2 variance) and subband matched filters
(since we have AWGN); for purposes of transform design, we
do not consider interference but do include it in our simulation
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results. With L denoting the number of samples per symbol, we
assume that the subband filters are of integer length N = L/M.
We also assume in this analysis that the gain factors «,, are
fixed. We partition the oversampled and pulse-shaped spreading
sequence into vectors of length M, which form the columns of

S1 SM+1 S(N—1)M+1
S2 SM+2 .- S(N-1)M+2

S=1| . : : . . 3)
SM S2M SNM

The subband spreading sequences are then given by
Seub = (TS)T = [Sl | So | R | S]u] 4)

where s,, is the mth subband spreading sequence. Referring to
Fig. 3, the received signal is given by

S1 n1
52 n2

x=d +o =ds+on 5)
SL nr

where d is the data bit (either +1 or —1), s is the spreading
sequence, and n is the noise.

We first compute the signal power by considering only the
signal component ds of (5). After filling the delay line, passing
through the transform T and subband matched filters, and
scaling by «,,,, we have

T
v, = damS;,Sm (6)
where
tm, 181 T tm2S2 + -+ tm mSm
tm1SM41 +tm2Svy2 + -0+ L, MS2m
S = .

b aS(N—1)M+1+ b 2S(N—1)Mm42+- -+ tm,MSNM(7)

and?; ; is the 7, jth element of T'. The signal power is then given

by
M 2
(Z q;f,,,) . ®)

m=1

[)s =

Next, we compute the noise power by considering only the
noise component on of (5). In this case, (6) becomes

T
Vpy = OQmN,, Sy, ©)
where
tm,lnl + tm,2n2 + -+ th\,j’rLA[
b 1M 41 + I + oo + by pnom
n,,=

b AN =1)M+1F L 2 (N—1) M2+ Flm MTIN M

(10)
The noise power is then given by
M 2
P.=FE (Z@;) (11)
m=1
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where F is the expectation operator, and v,), is given in (9). The
output SNR is then the ratio of (8) to (11)

SNR—PS
=5

n

12)

In order to simplify, we assume the rows of T are orthogonal
and that all elements of the spreading sequence and T are nor-
malized. Then, sZ's,, < NM?, and the cross-terms in (11) are
zero, leaving

M
P.=E|> (v;;l)zl (13)
m=1
and
M 2
< > damsﬁsm>
m=1
SNR > Vi v (14)
NM?2g? 2—1 a2, k¥1 [

The problem is now to maximize this lower bound. If we con-
strain the denominator to be a constant, then we need only max-
imize the numerator. Because the data is assumed to be binary,
the square in the numerator can be dropped in order to find the
extrema.

We illustrate the solution to the problem for the simple case
of a two-subband (M = 2) receiver with length-two (N = 2)
subband filters—the general case is similarly solved. For this
simple case, (14) becomes

[dmsr{s] + dagsgsz]Q
SNR > )
T 802 [(11, + ] ,) o + (13, +13,5) 03]

15)

If we constrain the denominator in (15) to be a constant, then we
need only maximize the numerator. Because the data is assumed
to be binary, the square in the numerator can be dropped in order
to find the extrema. Using the method of Lagrange multipliers,
a sufficient condition for extrema is

Vif—AVig=0 (16)
where
t=[t11t121t21 tz,z]T (17)
f=oaus{s; + ass; s (13)
g=of (111 +11,) + a3 (51 +13 ) (19)
and A is the multiplier. Equation (16) leads to
203 A4 0 B
0 202A, t=0 (20)
where
2 2
s]+s3 )\ 5182 + 5354
A= i 1)
5189 + $354

2 2
Sy + sy A
Qg Qg

which can be rewritten as the following eigenvalue problem:

BT? = \T? [“1 0 }

0 s (22)
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where

2 2
51+ 83
§182 + S354

5189 + 8354

23
s% + "3421 (23)

Thus, the transform optimization problem can be solved by
choosing the rows of T to be the eigenvectors of B and «; to
be the corresponding eigenvalue. For the general case of M

subbands with subband filter lengths /V, the elements of B are
given by

M

b, = Z S(im1)M+mS(i—1)M+n-
i=1

(24)

The algorithm for finding the optimal transformation matrix
under the assumption of subband matched filters, which max-
imizes the lower bound in (14), can be summarized as follows.
Build the matrix B with entries as in (24) using the spreading
sequence that is assumed to be given. Find the eigenvectors of
B, use them as the rows of T (in any order), and set «; to be
the corresponding eigenvalues. Simulation results of the sub-
band receiver using the optimized transform will be given in
Section IV.

The optimized transform matrix T can be equivalently seen
as an eigenvector decomposition of the average input correla-
tion matrix, as seen by the parallel receiver. To illustrate, con-
sider a simple case with M = 3 and N = 4, which implies a
pulse-shaped spreading sequence of length 12 and 12 samples
per symbol. B is a 3 x 3 matrix with diagonal entries [according
to (24)]

2 2. 2, 2
bi,1 =81+ 55+ 57+ 570

2, 2, 2, 2
bao =55+ 55+ s3 + 511

bss =53 + 55 + 55+ 51y (25)
and off-diagonal entries
bia =bo1 = 5152 + 5455 + 5758 + S10511
b1z =b31 = 5153 + 5456 + 5759 + 510512
baz =b3a = 5253 + 5556 + 5859 + 511512 (26)

The input correlation matrix R in this case is a 12 x 12 matrix,
which can be partitioned into 3 x 3 blocks as follows:

Ry

R,

27)
R3

R,

It can be seen that the matrix B is the sum of these diagonal
blocks B = ). R; or an average input correlation matrix.

At the extreme of scaling when M = L, the subband filters
have length one, and we essentially have a fullband receiver. In
this case, B = R, and the optimal transform result is equivalent
to the well-known eigenfilter result, which maximizes the SNR
[2].

One open question is the relation between the lower bound
of the output SNR, which was maximized, and the true SNR.
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A numerical evaluation of the exact SNR given in (12) for dif-
ferent transformation matrices T reveals that the matrix opti-
mized with the method above does, in fact, lead to the maximum
SNR value [9].

C. On the Existence of the Optimal Transform

The matrix B = SS”, and therefore, rank(B) =
min(N, M). Alternatively, B (N x N) can be full rank
only if N > M. This can be seen by again thinking of B as an
average input correlation matrix B = >~ R, and with help of
the following well-known rank inequality [10]

rank(F + G) < rank(F) + rank(G). (28)

Here, if the length of the subband filter N is greater than or equal
to the transform size M, then the matrix B is typically nonsin-
gular (based on our observations) with M distinct eigenvalues;
if N < M, there are usually N distinct nonzero eigenvalues
and M — N zero eigenvalues (again, based on our observations).
It may, however be possible to construct a spreading sequence
such that B is singular for N > M . The nonzero eigenvalues are
typically distinct; therefore, there exists a corresponding set of
orthogonal eigenvectors; eigenvectors corresponding to the zero
eigenvalues can be chosen arbitrarily. Therefore, in general, M
orthogonal eigenvectors can be found, and an optimal transform
T can be constructed as shown in the previous section.

IV. RESULTS

The proposed RLS-based subband, adaptive DSSS receiver
was simulated using the DCT, Hadamard transform, and optimal
transform from Section III with various numbers of subbands.
System parameters include a length-31 PN sequence and chip
pulses shaped with a square-root raised cosine (SRRC) filter
(50% excess bandwidth). In the fullband receiver, the adaptive
filter length L = 128 (length-31 PN sequence, four samples
per chip, which yields 124 samples, resampled to get 128 sam-
ples). In the subband receiver, subband adaptive filter lengths
are N = 32,16, and 8 for M = 4, 8, 16 subbands, respec-
tively. We assume perfect carrier and chip synchronization. In
addition, we initialize the gain factors to the eigenvalues of B
but allow them to adapt based on d — z; (as in Fig. 3) since,
depending on the noise or interference, the subband filters may
adapt to something other than the subband matched filters. In
this case, the transform derived in the previous section may be
suboptimal. The update of the subband filters and the gain fac-
tors are independent of each other and can be viewed as two
cascaded control loops.

A. Bit Error Rate Results

BER results for the subband receiver were compared to
theory, the matched filter receiver, and the fullband receiver;
for each simulation point, 2 x 10> symbols are used. For sim-
ulations involving MUI and NBI, we assume four other users
and three narrowband interferences (sinusoids), respectively,
where each is 6 dB stronger than the desired signal; zero mean,
white Gaussian noise is also added to achieve a desired SNR,
which, during training, is 6 dB. Comparison of BERs for the
fullband and subband receivers is based on a fixed convergence
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time: We adjust the initial RLS parameters so that the number
of subbands multiplied by the convergence time of the receiver
is constant.

Fig. 4 illustrates the BER curves for the various receivers in
AWGN. As can be seen, the subband, adaptive receivers (M =
4 subbands) perform nearly as well as the fullband receiver but
with significantly reduced computational complexity, a much
faster convergence speed (4 X), and the added feature of a par-
allel implementation. The receiver with the optimal transform
does in fact have a slightly better BER than that with the DCT
and Hadamard transforms. However, given the simple imple-
mentation of these latter transforms, the designer may choose
one of these instead. Fig. 5 illustrates the BER curves for the
various receivers in MUI and NBI. For this case, the results are
similar to the AWGN case, except for the matched filter receiver.

Figs. 6 and 7 elaborate upon the subband (DCT) adaptive
DSSS receiver performance for various numbers of subbands.
The results for the AWGN case (Fig. 6) show relatively good
scaling of the architecture, with subband receivers performing
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as well as the fullband receiver in all cases but, again, with re-
duced computational complexity [O(L?/M) and assuming a
relatively small overhead associated with the transform] and
a much faster convergence speed (increasing linearly with the
number of subbands). For the MUI/NBI case (Fig. 7), the BER
increases with increasing number of subbands in the receiver.
The degradation in terms of Ej /Ny is similar over the range
shown.

B. Transform Results

Table I gives the MSE (actual values calculated from theory)
of the receiver output for the MUI case where we have two in-
terfering synchronous users, each 10 dB stronger than the de-
sired user at 6 dB SNR. The results for the four-subband receiver
show that the optimized transform derived for the AWGN case
also performs slightly better than other transforms in the MUI
case when using subband Wiener filters and equally well when
using subband matched filters.
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TABLE 1
SUBBAND RECEIVER MSE WITH DIFFERENT TRANSFORMS
(FOUR SUBBANDS) WITH 10 DB MUI, No NBI

Matched Subband Filters Subband Wiener Solutions
Identity 0.5784 0.1781
Hadamard 0.5784 0.1432
DCT 0.5784 0.1360
Optimized 0.5784 0.1348

V. CONCLUSIONS

In this paper, we have proposed a subband version of the
RLS-based, adaptive DSSS receiver. The resulting subband re-
ceiver is designed and operated differently than other subband
adaptive systems such as acoustic echo cancelers because of the
sampling at the symbol time of the receiver output and the up-
date of the adaptive filter at the symbol rate. We have shown
that the subband receiver, when using either the optimal trans-
form, DCT, or Hadamard transform, has BERs comparable to
the fullband receiver but with a faster convergence speed (and
thus a reduced training period) and significantly reduced com-
putation (fast RLS cannot be used in such a receiver). In addi-
tion, the inherent architectural parallelism may allow for high-
speed system implementations. For spread-spectrum systems
with long PN codes or many users, these are significant advan-
tages. Although the subband receiver with the optimal transform
was shown to give slightly better BERs, convenient implemen-
tations of the DCT or Hadamard transforms may yield a more
practical subband receiver.
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