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Abstract—In this paper, we present a systematic study of the
vulnerability of automatic speaker verification to a diverse range
of spoofing attacks. We start with a thorough analysis of the spoof-
ing effects of five speech synthesis and eight voice conversion
systems, and the vulnerability of three speaker verification systems
under those attacks. We then introduce a number of countermea-
sures to prevent spoofing attacks from both known and unknown
attackers. Known attackers are spoofing systems whose output was
used to train the countermeasures, while an unknown attacker
is a spoofing system whose output was not available to the coun-
termeasures during training. Finally, we benchmark automatic
systems against human performance on both speaker verification
and spoofing detection tasks.

Index Terms—Speaker verification, speech synthesis, voice con-
version, spoofing attack, anti-spoofing, countermeasure, security.

I. INTRODUCTION

T HE TASK of automatic speaker verification (ASV),
sometimes described as a type of voice biometrics, is to

accept or reject a claimed identity based on a speech sample.
There are two types of ASV system: text-dependent and text-
independent. Text-dependent ASV assumes constrained word
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content and is normally used in authentication applications
because it can deliver the high accuracy required. However,
text-independent ASV does not place constraints on word con-
tent, and is normally used in surveillance applications. For
example, in call-center applications1,2, a caller’s identity can
be verified during the course of a natural conversation with-
out forcing the caller to speak a specific passphrase. Moreover,
as such a verification process usually takes place under remote
scenarios without any face-to-face contact, a spoofing attack –
an attempt to manipulate a verification result by mimicking a
target speaker’s voice in person or by using computer-based
techniques such as voice conversion or speech synthesis –
is a fundamental concern. Hence, in this work, we focus on
spoofing and anti-spoofing for text-independent ASV.

Due to a number of technical advances, notably channel and
noise compensation techniques, ASV systems are being widely
adopted in security applications [3]–[7]. A major concern, how-
ever, when deploying an ASV system, is its resilience to a
spoofing attack. As identified in [8], there are at least four types
of spoofing attack: impersonation [9]–[11], replay [12]–[14],
speech synthesis [15], [16] and voice conversion [17]–[21].
Among the four types of spoofing attack, replay, speech syn-
thesis, and voice conversion present the highest risk to ASV
systems [8]. Although replay might be the most common spoof-
ing technique which presents a risk to both text-dependent
and text-independent ASV systems [12]–[14], it is not viable
for the generation of utterances of specific content, such as
would be required to maintain a live conversation in a call-
center application. On the other hand, open-source software for
state-of-the-art speech synthesis and voice conversion is read-
ily available (e.g., Festival3 and Festvox4), making these two
approaches perhaps the most accessible and effective means to
carry out spoofing attacks, and therefore presenting a serious
risk to deployed ASV systems [8]. For that reason, the focus in
this work is only on those two types of spoofing attacks.

A. Speech Synthesis and Voice Conversion Spoofing

Many studies have reported and analysed the vulnerabil-
ity of ASV systems to speech synthesis and voice conversion

1http://www.nuance.com/for-business/customer-service-solutions/voice-
biometrics/freespeech/index.htm

2https://youtu.be/kyPTGoDyd_o
3http://www.cstr.ed.ac.uk/projects/festival/
4http://festvox.org/
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spoofing. The potential vulnerability of ASV to synthetic
speech was first evaluated in [22], [23]. An HMM-based speech
synthesis system was used to spoof an HMM-based, text-
prompted ASV system. They reported that the false acceptance
rate (FAR) increased from 0% to over 70% under a speech
synthesis spoofing attack. In [15], [16], the vulnerability of
two ASV systems – a GMM-UBM system (Gaussian mixture
models with a universal background model), and an SVM sys-
tem (support vector machine using a GMM supervector) – was
assessed using a speaker-adaptive, HMM-based speech synthe-
sizer. Experiments using the Wall Street Journal (WSJ) corpus
(283 speakers) [24] showed that FARs increased from 0.28%
and 0.00% to 86% and 81% for GMM-UBM and SVM sys-
tems, respectively. These studies confirm the vulnerability of
ASV systems to speech synthesis spoofing attack.

Voice conversion as a spoofing method has also been attract-
ing increasing attention. The potential risk of voice conversion
to a GMM ASV system was evaluated for the first time
in [25], which used the YOHO database (138 speakers). In
[17], [26], [27], text-independent GMM-UBM systems were
assessed when faced with voice conversion spoofing on NIST
speaker recognition evaluation (SRE) datasets. These studies
showed an increase in FAR from around 10% to over 40% and
confirmed the vulnerability of GMM-UBM systems to voice
conversion spoofing attack.

Recent studies [18], [19] have evaluated more advanced
ASV systems based on joint factor analysis (JFA), i-vectors,
and probabilistic linear discriminative analysis (PLDA), on the
NIST SRE 2006 database. The FARs of these systems increased
five-fold from about 3% to over 17% under attacks from voice
conversion spoofing.

B. Spoofing Countermeasures

The vulnerability of ASV systems to spoofing attacks has led
to the development of anti-spoofing techniques, often referred
to as countermeasures. In [28], a synthetic speech detector
based on the average inter-frame difference (AIFD) was pro-
posed to discriminate between natural and synthetic speech.
This countermeasure works well if the dynamic variation of the
synthetic speech is different from that of natural speech; how-
ever, if global variance compensation is applied to the synthetic
speech, the countermeasure becomes less effective [15].

In [29], [30], a synthetic speech detector based on image
analysis of pitch-patterns was proposed for human versus
synthetic speech discrimination. This countermeasure was
based on the observation that there can be artefacts in
the pitch contours generated by HMM-based speech synthe-
sis. Experiments showed that features extracted from pitch-
patterns can be used to significantly reduce the FAR for
synthetic speech. The performance of the pitch-pattern coun-
termeasure was not evaluated for detecting voice conversion
spoofing.

In [31], a temporal modulation feature was proposed to detect
synthetic speech generated by copy-synthesis. The modula-
tion feature captures the long-term temporal distortion caused
by independent frame-by-frame operations in speech synthe-
sis. Experiments conducted on the WSJ database showed the

effectiveness of the modulation feature when integrated with
frame-based features. However, whether the detector is effec-
tive across a variety of speech synthesis and voice conver-
sion spoofing attacks is unknown. Also using spectro-temporal
information, a feature derived from local binary patterns [32]
was employed to detect voice conversion and speech synthesis
attacks in [33], [34].

Phase- and modified group delay-based features have also
been proposed to detect voice conversion spoofing [35]. A
cosine-normalised phase feature was derived from the phase
spectrogram while the modified group delay feature contained
both magnitude and phase information. Evaluation on the NIST
SRE 2006 data confirmed the effectiveness of the proposed fea-
tures. However, it remains unknown whether the phase-based
features are also effective in detecting attacks from speech
synthesisers using unknown vocoders. Another phase-based
feature called the relative phase shift was proposed in [16], [36],
[37] to detect speech synthesis spoofing, and was reported to
achieve promising performance for vocoders using minimum
phase rather than natural phase.

In [38], an average pair-wise distance (PWD) between
consecutive feature vectors was employed to detect voice-
converted speech, on the basis that the PWD feature is able to
capture short-term variabilities, which might be lost during sta-
tistical averaging when generating converted speech. Although
the PWD was shown to be effective against attacks from their
own voice conversion system, this technique (which is similar
to the AIFD feature proposed in [28]) might not be an effec-
tive countermeasure against systems that apply global variance
enhancement.

In contrast to the above methods focusing on discriminative
features, a probabilistic approach was proposed in [39], [40].
This approach uses the same front-end as ASV, but treats the
synthetic speech as a signal passed through a synthesis filter.
Experiments on the NIST SRE 2006 database showed com-
parable performance to feature-based countermeasures. In this
work, we focus on feature-based anti-spoofing techniques, as
they can be optimised independently without rebuilding the
ASV systems.

C. Motivations and Contributions of This Work

In the literature, each study assumes a particular spoofing
type (speech synthesis or voice conversion) and often just one
variant (algorithm) of that type, then designs and evaluates a
countermeasure for that specific, known attack. However, in
practice it may not be possible to know the exact type of
spoofing attack and therefore evaluations of ASV systems and
countermeasures under a broad set of spoofing types are desir-
able. Most, if not all, previous studies have been unable to
conduct a broader evaluation because of the lack of a standard,
publicly-available spoofing database that contains a variety of
spoofing attacks. To address this issue, we have previously
developed a spoofing and anti-spoofing (SAS) database includ-
ing both speech synthesis and voice conversion spoofing attacks
[1]. This database includes spoofing speech from two different
speech synthesis systems and seven different voice conversion
systems.
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Now, we first broaden the SAS database by including four
more variants: three text-to-speech (TTS) synthesisers and one
voice conversion system. They will be referred to as SS-
SMALL-48, SS-LARGE-48, SS-MARY and VC-LSP5, and are
described in Section II.A.

We also develop a joint speaker verification and countermea-
sure evaluation protocol, then refine that evaluation protocol
to enable better generalisability of countermeasures developed
using the database. We include contributions from both the
speech synthesis and speaker verification communities. This
database is offered as a resource for researchers investigat-
ing generalised spoofing and anti-spoofing methods6. We hope
that the availability of a standard database will contribute to
reproducible research7.

Second, with the SAS database, we conduct a comprehen-
sive analysis of spoofing attacks on six different ASV systems.
From this analysis we are able to determine which spoofing
type and variant currently poses the greatest threat and how
best to counter this threat. To the best of our knowledge, this
study is the first evaluation of the vulnerability of ASV using
such a diverse range of spoofing attacks and the most thorough
analysis of the spoofing effects of speech synthesis and voice
conversion spoofing systems under the same protocol.

Third, we present a comparison of several anti-spoofing
countermeasures to discriminate between human and artificial
speech. In our previous work, we applied cosine-normalised
phase [35], modified group delay [35] and segment-based mod-
ulation features [31] to detect voice converted speech, and
applied pitch pattern based features to detect synthetic speech
[29], [30]. In this work, we evaluate these countermeasures
against both spoofing types and propose to fuse decisions
at the score level in order to leverage multiple, complemen-
tary sources of information to create stronger countermeasures.
We also extend the segment-based modulation feature to an
utterance-level feature, to account for long-term variations.

Finally, we perform listening tests to evaluate the ability of
human listeners to discriminate between human and artificial
speech8. Although the vulnerability of ASV systems in the
face of spoofing attacks is known, some questions still remain
unanswered. These include whether human perceptual abil-
ity is important in identifying spoofing and whether humans
can achieve better performance than automatic approaches
in detecting spoofing attacks. In this work, we attempt to
answer these questions through a series of carefully-designed
listening tests. In contrast to the human assisted speaker recog-
nition (HASR) evaluation [43], we consider spoofing attacks

5The four systems are new in this article while other systems have been pub-
lished in a conference paper [1]. SS-SMALL-48 and SS-LARGE-48 allow us
to analyse the effect of sampling rates of spoofing materials. SS-MARY is use-
ful to understand the effect of waveform concatenation-based speech synthesis
spoofing.

6Based on this database, a spoofing and countermeasure challenge [41], [42]
has already been successfully organised as a special session of INTERSPEECH
2015.

7The SAS corpus is publicly available: http://dx.doi.org/10.7488/ds/252
8The preliminary version was published at INTERSPEECH 2015 [2] where

we focused on human and automatic spoofing detection performance on wide-
band and narrowband data. The current work benchmarks automatic systems
against human performance on speaker verification and spoofing detection
tasks.

in speaker verification and conduct listening tests for spoofing
detection, which was not considered in the HASR evaluation.

II. DATABASE AND PROTOCOL

We extended our SAS database [1] by including additional
artificial speech. The database is built from the freely available
Voice Cloning Toolkit (VCTK) database of native speakers of
British English9. The VCTK database was recorded in a hemi-
anechoic chamber using an omni-directional head-mounted
microphone (DPA 4035) at a sampling rate of 96 kHz. The sen-
tences are selected from newspapers, and the average duration
of each sentence is about 2 seconds.

To design the spoofing database, we took speech data from
VCTK comprising 45 male and 61 female speakers and divided
each speaker’s data into five parts:

A: 24 parallel utterances (i.e., same sentences for all speak-
ers) per speaker: training data for spoofing systems.

B: 20 non-parallel utterances per speaker: additional training
for spoofing systems.

C: 50 non-parallel utterances per speaker: enrolment data for
client model training in speaker verification, or training
data for speaker-independent countermeasures.

D: 100 non-parallel utterances per speaker: development set
for speaker verification and countermeasures.

E: Around 200 non-parallel utterances per speaker: evalua-
tion set for speaker verification and countermeasures.

In Parts B — E, sentences were randomly selected from
newspapers without any repeating sentence across speakers. In
Parts A and B, we have two versions, downsampled to 48 kHz
and 16 kHz respectively, while in Parts C, D and E all signals
are downsampled to 16 kHz. Parts A and B allow us to analyse
the effects of sampling rate for spoofing attack. For training the
spoofing systems, we designed two training sets. The small set
consists of data only from Part A, while the large set comprises
the data from Parts A and B together.

A. Spoofing Systems

We implemented five speech synthesis (SS) and eight voice
conversion (VC) spoofing systems, as summarised in Table I.
These systems were built using both open-source software (to
facilitate reproducible research) as well as our own state-of-the-
art systems (to provide comprehensive results):

NONE: This is a baseline zero-effort impostor trial in which
the impostor’s own speech is used directly with no attempt to
match the target speaker.

SS-LARGE-16: An HMM-based TTS system built with
the statistical parametric speech synthesis framework described
in [44]. For speech analysis, the STRAIGHT vocoder with
mixed excitation is used, which results in 60-dimensional Bark-
Cepstral coefficients, logF0 and 25-dimensional band-limited
aperiodicity measures [45], [46]. Speech data from 257 (115
male and 142 female) native speakers of British English is used
to train the average voice model. In the speaker adaptation
phase, the average voice model is transformed using struc-
tural variational Bayesian linear regression [47] followed by

9http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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TABLE I
SUMMARY OF THE SPOOFING SYSTEMS USED IN THIS PAPER. MGC, BAP, AND F0 MEAN MEL-GENERALISED CEPSTRAL (MGC) COEFFICIENTS,

BAND APERIODICITY (BAP) AND FUNDAMENTAL FREQUENCY (F0)

maximum a posteriori (MAP) adaptation, using the target
speaker’s data from Parts A and B. To synthesise speech, acous-
tic feature parameters are generated from the adapted HMMs
using a parameter generation algorithm that considers global
variance (GV) [48]. An excitation signal is generated using
mixed excitation and pitch-synchronous overlap and add [49],
and used to excite a Mel-logarithmic spectrum approxima-
tion (MLSA) filter [50] corresponding to the STRAIGHT Bark
cepstrum, to create the final synthetic speech waveform.

SS-LARGE-48: Same as SS-LARGE-16, except that 48 kHz
sample rate waveforms are used for adaptation. The use of
48 kHz data is motivated by findings in speech synthesis that
speaker similarity can be improved significantly by using data
at a higher sampling rate [51].

SS-SMALL-16: Same as SS-LARGE-16, except that only
Part A of the target speaker data is used for adaptation.

SS-SMALL-48: Same as SS-SMALL-16, except that 48 kHz
sample rate waveforms are used to adapt the average voice.

SS-MARY: Based on the Mary-TTS10 unit selection synthe-
sis system [52]. Waveform concatenation operates on diphone
units. Candidate units for each position in the utterance are
found using decision trees that query the linguistic features of
the target diphone. A preselection algorithm is used to prune
candidates that do not fit the context well. The target cost
sums linguistic (target) and acoustic (join) costs. Candidate
diphone and target diphone labels and their contexts are used
to compute the linguistic sub-cost. Pitch and duration are used
for the join cost. Dynamic programming is used to find the
sequence of units with the minimum total target plus join
cost. Concatenation takes place in the waveform domain, using
pitch-synchronous overlap-add at unit boundaries.

VC-C1: The simplest voice conversion method, which
modifies the spectral slope simply by shifting the first
Mel-Generalised Cepstral coefficient (MGCs) [53]. No other
speaker-specific features are changed. The STRAIGHT
vocoder is used to extract MGCs, band aperiodicities
(BAPs) and F0.

VC-EVC: A many-to-many eigenvoice conversion
(EVC) system [54]. The eigenvoice GMM (EV-GMM) is
constructed from the training data of one pivot speaker in the

10http://mary.dfki.de/

ATR Japanese speech database [55], and 273 speakers (137
male, 136 female) from the JNAS database11. Settings are
the same as in [56]. The 272-dimensional weight vectors are
estimated by using the Part A of the training data. STRAIGHT
is used to extract 24-dimensional MGCs, 5 BAPs, and F0. The
conversion function is applied only to the MGCs.

VC-FEST: The voice conversion toolkit provided by the
open-source Festvox system. It is based on the algorithm pro-
posed in [57], which is a joint density Gaussian mixture model
with maximum likelihood parameter generation considering
global variance. It is trained on the Part A set of parallel training
data, keeping the default settings of the toolkit, except that the
number of Gaussian components in the mixture distributions is
set to 32.

VC-FS: A frame selection voice conversion system, which
is a simplified version of exemplar-based unit selection [58],
using a single frame as an exemplar and without a concatenation
cost. We used the Part A set for training. The same features as in
VC-C1 are used, and once again only the MGCs are converted.

VC-GMM: Another GMM-based voice conversion method
very similar to VC-FEST but with some enhancements, which
also uses the parallel training data from Part A. STRAIGHT
is used to extract 24-dimensional MGCs, 5 BAPs, and F0.
The search range for F0 extraction is automatically optimized
speaker by speaker to reduce errors. Two GMMs are trained for
separately converting the 1st through 24th MGCs and 5 BAPs.
The number of mixture components is set to 32 for MGCs and
8 for BAPs, respectively. GV-based post-filtering [59] is used
to enhance the variance of the converted spectral parameter
trajectories.

VC-KPLS: Voice conversion using kernel partial least
square (KPLS) regression [60], trained on the Part A parallel
data. Three hundred reference vectors and a Gaussian kernel are
used to derive kernel features and 50 latent components are used
in the PLS model. Dynamic kernel features are not included,
for simplicity. STRAIGHT is used to extract 24-dimensional
MGCs, 25 BAPs, and F0.

VC-TVC: Tensor-based arbitrary voice conversion
(TVC) system [56]. To construct the speaker space, the
same Japanese dataset as in VC-EVC is used. The size of the

11http://www.milab.is.tsukuba.ac.jp/jnas/instruct.html
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TABLE II
NUMBER OF TRIALS IN THE DEVELOPMENT AND EVALUATION SETS

weight matrices that represent each speaker is set to 48 × 80.
The same part of the SAS database and the same features as
in VC-EVC are used, and again only MGCs are converted,
without altering other features.

VC-LSP: This system is also based on the standard GMM-
based voice conversion method similar to VC-GMM using the
parallel training data from Part A. STRAIGHT is used as the
speech analysis-synthesis method. 24-dimensional line spectral
pairs (LSPs) and their delta coefficients are used as the spectral
features. A 16-component GMM is trained for the modelling
of joint LSP feature vectors. For each component, the four
blocks of its covariance matrix are set to be diagonal. No qual-
ity enhancement or post-filtering techniques are applied during
the reconstruction of converted speech.

In addition to the above descriptions, for all the voice
conversion approaches, F0 is converted by a global linear trans-
formation: simple mean-variance normalisation. In VC-KPLS,
VC-EVC, VC-TVC, VC-FS and VC-C1, the source speaker
BAPs are simply copied, without undergoing any conversion.

B. Speaker Verification and Countermeasure Evaluation
Protocol

For the evaluation of ASV systems, enrolment data for
each client (speaker) were selected from Part C under two
conditions: 5-utterance or 50-utterance enrolments. For five
utterances, this is about 5-10 seconds of speech while for 50
utterances it is about 1 minute of speech. The development set,
used to tune the ASV system and decide thresholds, was taken
from Part D and involves both genuine and impostor trials. All
utterances from a client speaker in Part D were used as genuine
trials, and this results in 1498 male and 1999 female genuine
trials. For the impostor trials, ten randomly selected non-target
speakers were used as impostors. All Part D utterances from
a specific impostor were used as impostor trials against the
client’s model, leading to 12981 male and 17462 female impos-
tor trials. The evaluation set is taken from Part E and is arranged
into genuine and imposter trials in a similar way to the develop-
ment set, with 4053 male and 5351 female genuine trials, and
32833 male and 46736 female impostor trials. A summary of
the development and evaluation sets is shown in Table II.

We used the synthetic speech and voice conversion systems
described above to generate artificial speech for both devel-
opment and evaluation sets. During the execution of spoofing
attacks, the transcript of an impostor trial was used as the textual
input to each speech synthesis system, and the speech signal
of the impostor trial was the input to each voice conversion
system. As a result, the zero-effort impostor trial, the speech
synthesis spoofed trial, and the voice conversion spoofed trial
all have the same language content (i.e., word sequence). In

TABLE III
NUMBER OF SPEAKERS AND TRIALS FOR TRAINING, DEVELOPMENT,

AND EVALUATION SETS OF THE COUNTERMEASURE PROTOCOL

this way, the number of spoofed trials of one spoofing system
is exactly the same as the number of impostor trials presented
in Table II. This allows a fair comparison between non-spoofed
and spoofed speaker verification results. Only five of the avail-
able spoofing systems were used during development, with all
thirteen spoofing systems (Table I) being run on the evaluation
set. Hence, the number of total spoofed trials is 12981× 5 and
17462× 5 for males and females, respectively, for the develop-
ment set, and 32833× 13 and 46736× 13 for male and female
speakers, respectively, for the evaluation set.

In the countermeasure evaluation protocol, we used a further
25 speakers’ voices as training data and only implemented five
attacks (as known attacks) on the training set. The 25 speakers
do not appear in the development and evaluation sets for ASV,
and this allows us to develop speaker- and gender-independent
countermeasures. For countermeasure development and evalu-
ation sets, the same speakers and same spoofed trials are used
as those for ASV. This allows us to integrate countermeasures
with ASV systems and to evaluate the integration performance.
A summary of the countermeasure protocol is presented in
Table III.

III. SPEAKER VERIFICATION SYSTEMS

We used three classical ASV systems: Gaussian Mixture
Models with a Universal Background Model (GMM-UBM)
[61], Joint Factor Analysis (JFA) [62] and i-vector with
Probabilistic Linear Discriminant Analysis (PLDA) [63]. In this
paper, we use PLDA to refer to this i-vector-PLDA system.
Each system was implemented under the two enrolment scenar-
ios: 5-utterance and 50-utterance enrolment. All systems used
the same front-end to extract acoustic features: 19-dimensional
Mel-Frequency Cepstral Coefficients (MFCCs) plus log-energy
with delta and delta-delta coefficients. By excluding the static
energy feature (but retaining its delta and delta-delta), 59-
dimensional feature vectors are obtained. To extract MFCCs,
we applied a Hamming analysis window, the size of which
is 25 ms with a 10-ms shift, and we employed a mel-filter
bank with 24 channels. We note that C0 is not retained in the
extracted MFCCs. In practice, the SPro toolkit12 was used to
extract MFCCs. The AudioSeg toolkit was used to perform
voice activity detection (VAD) [64].

GMM-UBM: with 512 Gaussian components in the UBM,
and a client speaker model obtained by performing maximum a
posteriori (MAP) adaptation, with the relevance factor set to 10.
Only mean vectors were adapted, keeping diagonal covariance
matrices and mixture weights the same as in the UBM.

JFA: using a UBM with the same 512 components as the
GMM-UBM as well as eigenvoice and eigenchannel spaces

12Available at: http://www.irisa.fr/metiss/guig/spro/
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TABLE IV
STATISTICS OF WALL STREET JOURNAL (WSJ0, WSJ0, WSJCAM)
AND RESOURCE MANAGEMENT (RM) DATABASES USED TO TRAIN

UBM AND EIGENSPACES

with 300 and 100 dimensions, respectively. Cosine scoring was
performed on the speaker variability vectors.

PLDA: a PLDA system operating in i-vector space. An
i-vector is a low-dimensional vector to represent a speaker-
and channel-dependent GMM supervector M through a low
rank matrix T , as M = m+ Tw, where m is a speaker-
and channel-independent supervector, which is realised by a
UBM supervector in this work; T is also called the total
variability matrix; and w is the i-vector. In this work, 400-
dimensional i-vectors were extracted with the maximum a
posteriori (MAP) criterion and using the same UBM as the JFA
system. Linear discriminant analysis (LDA) was first applied
to reduce the i-vector dimension to 200. Then, i-vectors were
centred, length-normalised, and whitened. The whitening trans-
formation was learned from i-vectors in the development set.
After that, a Gaussian PLDA model was trained using the
expectation-maximisation (EM) algorithm which was run for
20 iterations. The rank of the eigenspace (number of columns
in the eigenmatrix) was set to 100. Scoring was done with a
log-likelihood ratio test. In practice, the MSR Identity Toolbox
[65] was used to implement the PLDA system.

We used three WSJ databases (WSJ0, WSJ1, and WSJCAM)
and the Resource Management database (RM1) for training
the UBM, eigenspaces, and LDA. The statistics of the three
databases are presented in Table IV. The sampling rate of all
four database is 16 kHz. We note that our preliminary exper-
imental results suggested that WSJCAM was very useful for
improving verification performance. The maximum likelihood
criterion was employed to train the UBM and eigenspaces while
the Fisher criterion was used to train LDA.

The 50 enrolment utterances were merged into 10 sessions
(each being the concatenation of 5 utterances); either 1 or 10
of these sessions were used in enrolment, for the two enrol-
ment scenarios. For PLDA, when using 10 enrolment sessions,
i-vectors were extracted from each session then averaged as
suggested in [66]; for JFA, all features from all sessions were
merged. We denote the ASV systems with 5 enrolment utter-
ances (presented as 1 session) as GMM-UBM-5, JFA-5 or
PLDA-5 and those with 50 enrolment utterances (presented as
10 sessions) as GMM-UBM-50, JFA-50 or PLDA-50.

IV. ANTI-SPOOFING COUNTERMEASURES

We now examine five countermeasures13, described below
along with the features they are based on, and then propose a

13The cosine normalised phase feature, modified group delay cepstral feature,
segment-based modulation feature and pitch pattern feature based counter-
measures have been presented in our previous conference papers [35], [31],
[30]. The current study examines the generalisation abilities of each individual
countermeasure and their combination in the face of various spoofing attacks.

fusion of these countermeasures in order to learn complemen-
tary information and improve anti-spoofing performance.

Given a speech signal x(n), short-time Fourier analysis can
be applied to transform the signal from the time domain to the
frequency domain by assuming the signal is quasi-stationary
within a short time frame, e.g., 25ms. The short-time Fourier
transform of the speech signal can be represented as follows:

X(ω) = |X(ω)|ejϕ(ω), (1)

where X(ω) is the complex spectrum, |X(ω)| is the magnitude
spectrum and ϕ(ω) is the phase spectrum. It is usual to define
|X(ω)|2 as the power spectrum, from which features that only
contain magnitude information, e.g., MFCCs, can be derived.
The proposed feature-based countermeasures are derived from
the complex spectrum X(ω) that has two parts: a real part
XR(ω) and an imaginary part XI(ω), and from which the phase
spectrum ϕ(ω) can be obtained.

To extract frame-wise features, we employ a hamming win-
dow, the size of which is 25ms, with a 5ms shift. The FFT length
is set to 512.

A. Cosine Normalised Phase Feature

Even though phase information is important in human speech
perception [67], most speech synthesis and voice conversion
systems use a simplified, minimum phase model which may
introduce artefacts into the phase spectrum. The cosine nor-
malised phase (CosPh) feature is derived from the phase spec-
trum, and can be used to discriminate between human and
synthetic speech. The feature is computed as follows:

1) Unwrap the phase spectrum.
2) Compute the CosPh spectrum by applying the cosine

function to the spectrum in 1) to normalise to [−1.0, 1.0].
3) Apply a discrete cosine transform (DCT) to the spectrum

in 2).
4) Keep the first 18 cepstral coeffcients, and compute their

delta and delta-delta coeffcients as features.
By normalizing the values of the unwrapped phase spectrum,
we can simplify subsequent statistical modeling. We note that
the motivation for applying the DCT is decorrelation and
dimensionality reduction; C0 is not retained.

B. Modified Group Delay Cepstral Feature

In addition to the artefacts in the phase spectrum, the statisti-
cal averaging inherent in parametric modeling of the magnitude
spectrum may also introduce artefacts, such as oversmoothed
spectral envelopes. The use of both phase and magnitude spec-
tra can therefore be useful for detecting synthetic speech. The
Modified Group Delay Cepstral Coefficients (MGDCCs) can be
used to detect artefacts in both spectra of synthetic speech. The
MGDCC feature has also been used in speech recognition [68]
and speaker verification [69]. The MGDCCs are derived from
the complex spectrum as follows:

1) Apply the fast Fourier transform (FFT) to a windowed
speech signal, x(n) and nx(n) to compute X(ω) and
Y (ω), respectively. Here nx(n) is the re-scaled signal of
x(n).



774 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 4, APRIL 2016

2) Compute the cepstrally-smoothed power spectrum14

|S(ω)|2 of |X(ω)|2.
3) Compute the MGD spectrum (R and I denote the real and

imaginary parts of the spectrum)

τρ(w) =
XR(w)YR(w) + YI(w)XI(w)

|S(w)|2ρ . (2)

4) Reshape τρ(w) as

τρ,γ(w) =
τρ(w)

|τρ(w)| |τρ(w)|
γ . (3)

5) Apply the DCT to τρ,γ(w) and keep the first 18 cepstral
coefficients with their delta and delta-delta coefficients as
MGDCC features.

In (2) and (3), ρ and γ are two weighting variables that
control the shape of the MGD spectrum. We set ρ = 0.7 and
γ = 0.2 based on the performance on the development set.

C. Segment-Based Modulation Feature

In speech synthesis and voice conversion, the speech sig-
nal is usually divided into overlapping frames for modeling,
and this frame-by-frame or state-by-state modeling may intro-
duce artefacts in the temporal domain due to the independence
assumptions made by the underlying statistical model. These
temporal artefacts are evident in the modulation domain and
can be used to detect synthetic and voice-converted speech. The
Segment-based Modulation Feature (SMF) is extracted from
the MGD cepstrogram based on our previous work [31]. The
procedure for computing the SMF is illustrated in Fig. 1 and
described as follows:

1) Divide the 18-dimensional MGD spectrogram into over-
lapping segments using a 50-frame window with 20-
frame shift.

2) Apply mean and variance normalisation to the MGD tra-
jectory of each dimension to make it have zero mean and
unit variance15.

3) Take the FFT of the normalised 18-dimensional trajecto-
ries to compute modulation spectra.

4) Concatenate the modulation spectra in one cepstrogram
segment into a supervector, and use this as the SMF
feature vector.

5) Average all the SMF vectors of one utterance to get an
average feature vector. This averaged feature vector will
be used as the feature vector for the utterance.

In practice, we used a 64-point FFT to extract a 32-
dimensional modulation spectrum for each MGD trajectory.
Hence, the modulation supervector of each segment is 18×
32 = 576. We pass this supervector to a support vector
machine (SVM) for classification. In practice, we employed the
LIBSVM toolkit [70] to implement the SVM. We used a radial
basis kernel, and set the penalty factor to 34.

14Cepstrally-smoothed spectrum is obtained through the following steps:
a) compute the log-amplitude spectrum from X(ω), and apply a median fil-
ter to smooth the spectrum; b) apply the DCT to the log spectrum and keep the
first 30 cepstral coefficients; c) apply the inverse DCT to the cepstral coeffcients
to obtain the cepstrally-smoothed spectrum S(ω).

15The motivation to perform mean-variance normalisation is to make the
trajectory of each dimension in the same scale.

Fig. 1. The process to extract Segment-based Modulation Features
(SMFs) from modified group delay cepstral features.

D. Utterance-Based Modulation Feature

To extract the segment-based modulation feature, a speech
signal needs to be divided into short segments first and then the
corresponding modulation features are extracted for each seg-
ment. An alternative approach is to extract modulation features
at the utterance level, to obtain Utterance-based Modulation
Features (UMFs).

The process to extract UMFs is similar to that of SMFs,
but only steps 2 – 4 are applied, without dividing the utter-
ances into frames. In practice, we used a 1024-point FFT to
extract the modulation spectrum for each MGD trajectory, then
applied a DCT to the modulation spectrum, and after that kept
the first 32 coefficients as features. Hence, the dimensionalities
of UMF and SMF for each utterance are the same: 576. Again,
we pass the feature vector to an SVM for classification. The
configuration of the SVM here is the same as that for SMF in
Section IV-C.

E. Pitch Pattern Feature

The prosody of synthetic speech is generally not the same
as natural speech [71] and therefore the pitch pattern is another
good candidate feature for a countermeasure. The pitch pattern,
φ[n,m], is calculated by dividing the short-range autocorre-
lation function, r[n,m] by a normalization function, p[n,m]
which is proportional to the frame energy [72]

φ[n,m] =
r[n,m]

p[n,m]
(4)

where

r[n,m] =

m/2∑
k=−m/2

x[n+ k −m/2]x[n+ k +m/2], (5)
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Fig. 2. Example binary pitch pattern image illustrating pitch stability Sc, pitch
stability range Rc, upper edge τU, lower edge τL, connected component time
support, and artefacts.

p[n,m] =
1

2

m/2∑
k=−m/2

x2[n+ k −m/2]

+
1

2

m/2∑
k=−m/2

x2[n+ k +m/2], (6)

and n, m are the sample instant and lag, respectively, over
which the autocorrelation is computed. The lag parameter is
chosen such that pitch frequencies can be observed [72]; in this
work, we choose 32 ≤ m ≤ 320 for a sample rate of 16kHz.

Once the pitch pattern is computed, we segment it into a
binary pitch pattern image through the rule

φseg[n,m] =

{
1, φ[n,m] ≥ θ
0, φ[n,m] < θ

(7)

where θ is a threshold; we set θ = 1/
√
2 for all n, based on

preliminary results on the development set. An example pitch
pattern image is shown in Fig. 2.

Extracting features from the pitch pattern is a two-step pro-
cess: 1) computation of the pitch pattern; 2) image analysis.
First, the pitch pattern is computed using (4) and segmented
using (7) to form a binary image. In the second step, image pro-
cessing of the segmented binary pitch pattern is performed in
order to extract the connected components (CCs), i.e., black
regions in Fig. 2. This processing includes determining the
bounding box and area of a CC, which are then used to dis-
tinguish between two types of CC: pitch pattern connected
components (PPCC) and irregularly-shaped components or
artefacts.

The resulting CCs are then analysed and the mean pitch
stability μs, mean pitch stability range μR, and time support
(TS) of each CC are computed as in [29]. The proposed image
processing-based approach determines parameters on a per-
connected component basis and then computes statistics over

the connected components of the utterance. The six element
utterance feature vector used for classification contains μR

and the TS of the artefacts, the number of artefacts, μS and
TS of the PPCC, and standard deviation of the TS of PPCC.
Other utterance features were considered during the training
and development stage but were found not to contribute to the
classifier accuracy.

For the pitch pattern countermeasure, a maximum likeli-
hood classifier based on the log-likelihoods computed from the
utterance feature vectors was used for classification. During
training, human and spoofing utterance feature vectors were
modeled as multivariate Gaussian distributions with full covari-
ance matrices. During testing, the utterance is determined to be
human if the log-likelihood ratio is greater than a threshold cal-
ibrated to produce equal error rate (EER) on the development
set.

F. Fused Countermeasure

To benefit from the multiple feature-based countermeasures,
we propose a fused countermeasure. In speaker verification,
system fusion is one way to combine multiple individual
speaker verification systems to achieve better performance [73],
[74]. A similar strategy can be applied for anti-spoofing, as each
feature-based countermeasure discussed above has its own pros
and cons. For example, the pitch pattern feature-based coun-
termeasure is expected to work well in detecting waveform
concatenation based spoofing attacks, while other countermea-
sures are expected to detect phase and temporal artefacts. It is
expected the fused countermeasure can benefit from the pros of
each individual countermeasure.

We perform linear fusion at the score level. We first train a
linear fusion function on the development set which only con-
tains known attacks, and then apply the fusion function on the
evaluation scores; finally, the fused score is used to discrimi-
nate between human and spoofed speech. In practice, we used
the BOSARIS Toolkit16 to train the fusion function.

V. EXPERIMENTS

A. Evaluation Metric

In both speaker verification and spoofing detection, there are
two types of errors: 1) genuine or human speech is accepted
as impostor or spoofed speech; 2) impostor or spoofed speech
is accepted as genuine or human. The first type of error is a
false rejection error, while the second type is a false acceptance.
When the false acceptance rate (FAR) equals to the false rejec-
tion rate (FRR), we are at the equal error rate (EER) point. In
this work, when reporting the false acceptance rates (FARs) and
the false rejection rates (FRRs) for a specific spoofing algo-
rithm, the decision threshold is set to achieve the EER operating
point for that spoofing algorithm. When reporting overall spoof-
ing performance, all the spoofed samples are pooled together
and treated as one (unknown) spoofing algorithm when setting
the threshold, because in practice one may not know the exact
type of spoofing algorithm.

16https://sites.google.com/site/bosaristoolkit/
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TABLE V
FALSE ACCEPTANCE RATES (FARS) IN %, ON THE EVALUATION SET FOR THE TWO VARIANTS (-5 AND -50) OF THREE SPEAKER VERIFICATION

SYSTEMS BASED ON: A GAUSSIAN MIXTURE MODEL WITH UNIVERSAL BACKGROUND MODEL (GMM-UBM); JOINT FACTOR ANALYSIS (JFA);
AND PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS (PLDA). THE DECISION THRESHOLD IS SET TO THE EQUAL ERROR RATE (EER)

POINT ON THE DEVELOPMENT SET

B. Spoofing ASV Systems Without Countermeasures

We evaluated the performance of the ASV systems for
the various synthetic speech and voice conversion variants
described in Section II-A. Prior to the evaluation, the ASV deci-
sion threshold was set to the EER point on the development set,
using only human speech.

Speaker verification results are presented in Table V. The
FARs for the baseline experiment, which uses only human
speech, are low (as expected) because the SAS database has
near-ideal recordings, free from channel and background noise.
In particular, the lowest FARs for GMM, JFA and PLDA sys-
tems are 0.09%, 1.25% and 1.16%, respectively. Note that the
short duration of the trials preculdes even lower FARs and
FRRs.

Whilst the ASV systems achieve excellent verification per-
formance, they are still vulnerable to spoofing. The simple
VC-C1 spoofing attack, which only modifies the spectral slope
of the source speaker, increases FAR for nearly every ASV
system. The attacks using speech synthesis or voice conver-
sion, with more advanced algorithms, lead to FARs as high as
99.95%. On average, speech synthesis leads to FARs of over
95% for male voices and over 80% for female voices, and more
sophisticated voice conversion algorithms lead to FARs of close
to 80% for both male and female voices. These observations
are consistent with previous studies on clean speech [16] and
telephone quality speech [18], [19], and confirm the vulnera-
bility of ASV systems to a diverse range of spoofing attacks.
In general, our experiments suggest that it is easier to spoof
male speakers than female speakers in the sense that the FARs
for the various spoofing attacks for female speakers are gener-
ally lower than that for male speakers. We speculate that it is
relatively harder to model female speech or perform female-
to-female conversion due to the higher variability of female
speech.

Although ASV systems that have more enrolment data avail-
able to them give lower FARs in the baseline case, they are
not necessarily more resistant to spoofing attack. For example,
under the VC-FEST attack, the FARs of JFA-5 and PLDA-5

male systems are 91.25% and 97.41%, respectively, and the
FARs of JFA-50 and PLDA-50 are even higher at 97.71% and
99.54%, respectively. Similar patterns can be observed for other
spoofing algorithms, as well as for female speech.

From the perspective of spoofing, the first interesting obser-
vation is that voice conversion is as effective at spoofing as
speech synthesis, given the same amount of training data. Most
of the speech synthesis systems used in this work require a
large amount of data to train the average voice model, which
is adapted to the target. On the other hand, most voice conver-
sion algorithms, including VC-FEST, VC-GMM and VC-FS,
only need source and target speech data to train their conver-
sion functions. Voice conversion spoofing is sometimes even
more effective than speech synthesis. It is worth highlighting
that the publicly-available voice conversion toolkit VC-FEST
is at least as effective as the other voice conversion and speech
synthesis techniques.

The second interesting observation is that, although VC-TVC
and VC-EVC use a Japanese database to train eigenvoices for
adaptation to English data, these methods still increase FARs
as much as the other variants. This suggests that attackers could
use alternate speech resources, i.e. speech corpora in another
language, if they cannot find enough resources for the target
language.

The third observation is that the use of higher sampling rate
training data in speech synthesis results in higher FARs of ASV
systems. This suggests that such data includes more speaker-
specific characteristics and that attackers can use this to conduct
more effective spoofing if they have access to such data.

The last observation is that more training data can improve
the effectiveness of speech synthesis and voice conver-
sion spoofing systems. Comparing SS-SMALL-16k and SS-
LARGE-16k, using 40 instead of 24 training utterances results
in an increase of about 4% absolute FAR. In contrast, using
more enrollment data for ASV systems does not seem to be
helpful in defending against spoofing attacks (except VC-C1) ,
although it does improve the baseline ASV performance with-
out spoofing. We speculate that, as the spoofed speech sounds
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TABLE VI
SPOOFING COUNTERMEASURE RESULTS IN TERMS OF FALSE

ACCEPTANCE RATE (FAR) IN % ON THE EVALUATION SET. THE

DECISION THRESHOLD IS SET TO THE EER POINT ON THE

DEVELOPMENT SET. THE FIRST GROUP OF 5 ATTACK METHODS IS

KNOWN AND THE REMAINING 8 ARE UNKNOWN

more like the target speaker, it will achieve higher likelihood
scores under any target speaker model that has been trained
using more enrollment data, and hence results in higher FARs.
This also explains why ASV systems with more enrollment
data succeed in defending against the VC-C1 attack, which can
be easily distinguished by the human ear in terms of speaker
similarity, as shown in Table VIII.

Given the wide-ranging spoofing results in Table V and
the above observations, it is clear that countermeasures are
needed. So, we next present an evaluation and analysis of
a range of countermeasures, including a proposed new fused
countermeasure.

C. Evaluation of Stand-Alone Countermeasures

We conducted experiments to evaluate the performance of
stand-alone countermeasures, i.e. their ability to discriminate
between human and artificial speech. When training counter-
measures, five of the spoofing systems listed in Table I, were
used: SS-SMALL-16, SS-LARGE-16, VC-C1, VC-FEST and
VC-FS.

For MFC, CosPh, MGD and PP features, GMM-based max-
imum likelihood classifiers were employed, while for SMS and
UMS features, SVM classifiers were used. Whilst many combi-
nations of features and classifier could of course be imagined,
these choices give us a representative range of countermeasures
to compare. For each countermeasure, the detection threshold
was set to achieve the EER point on the development set under
all five known attacks, and then the countermeasure was applied
to the evaluation set to compute the FARs shown in Table VI.
These results show that the frame-based features MFCC, CosPh
and MGD achieve better performance than the long-term fea-
tures SMS, UMS and PP. Even though the modulation features
SMS and UMS are derived from the MGD features, they do not
perform as well as frame-based MGD features. This observa-
tion is consistent with our previous work [31]. In the database,
due to the short duration of trials, long-term features gener-
ally only provide a rather small number of feature vectors per
utterance.

In respect of the frame-based features, the MGD-based coun-
termeasure achieves the best overall performance in terms of
low FARs and works well at detecting most types of spoofed
speech with the notable exception of the SS-MARY attack.
The MGD features include both magnitude and phase spectrum
information, whereas MFCCs only capture magnitude spectrum
and CosPh only phase spectrum. With respect to long-term
features, both SMS and UMS perform well at detecting sta-
tistical parametric speech synthesis spoofing, yet fail to detect
most of the voice conversion algorithms or unit selection speech
synthesis.

The pitch pattern countermeasure detects synthetic speech
well, but does not detect some voice conversion speech such
as that from VC-C1, VC-FEST, VC-KPLS and VC-LSP. This
is probably due to the fact that speech synthesis usually predicts
fundamental frequency (F0) from text (and so produces rather
unnatural trajectories) whereas voice conversion usually copies
a source speaker’s F0 trajectories to generate a target speaker’s
voice. Hence, voice conversion introduces fewer pitch pattern
artefacts than speech synthesis. We note that the pitch pattern
countermeasure achieves the best performance of 1.96% FAR
against the SS-MARY unit selection synthesis attack.

In general, most of the countermeasures achieve better per-
formance for known attacks than for unknown attacks, as
spoofing data from known attacks are available for training
countermeasures and those from unknown attacks are not avail-
able to train the detectors. From the perspective of spoofing
algorithms, SS-MARY is the most difficult to detect, and this
is presumed to be due to the fact that it uses original waveforms
to generate spoofed speech and thus introduces fewer artefacts
when compared with other methods.

We also fused the six individual countermeasures at the score
level to create a new countermeasure as detailed in Section IV-
F. The linear combination weights for MFC, CosPh, MGD,
SMS, UMS and PP countermeasures are 26.71, 9.56, 6.58, 0.53,
-0.07 and 0.97, respectively. The results for this are presented in
the last column of Table VI. The fused countermeasure detects
most spoofing attacks, achieving FARs under 1% against all but
one spoofing method; it fails to detect SS-MARY. Although the
PP countermeasure can discriminate extremely well between
human and SS-MARY speech, this ability is not picked up by
the fused countermeasure because PP has a low weight. This
is because the weights were learned on the development set,
which of course only contains known attacks (the first group
of 5 countermeasures in Table VI), but the PP countermeasure
performs poorly on many of those known attacks, especially
the voice conversion ones. Hence, it is given a low weight, and
essentially ignored in the fused countermeasure.

D. Spoofing ASV Systems that Employ a Countermeasure

We conducted experiments to evaluate the overall perfor-
mance of speaker verification systems that include a counter-
measure. We only consider the proposed fused countermeasure
here, because it exhibited better overall performance than any
individual countermeasure. We integrated the fused counter-
measure with each of the ASV systems as a post-processing
module – as illustrated in Fig. 3 – to reflect the practical use
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Fig. 3. A speaker verification system with an integrated countermeasure. The
integrated system only accepts a claimed identity if it is accepted by the speaker
verification system and classified as human speech by the countermeasure [16].

case in which a separately-developed standalone countermea-
sure is added to an already-deployed ASV system [16] without
significant modification of that system.

A good countermeasure should reduce FARs by rejecting
non-human speech. The FAR results of systems with an inte-
grated countermeasure are presented in Table VII. Comparing
against the FARs of the ASV systems without a countermea-
sure in Table V, we can make the following observations.
First, the FARs of all ASV systems are reduced dramatically
for both male and female speech, and go down from about
70%-100% to below 1% in the face of most types of spoof-
ing attack. This indicates that the fused countermeasure can
be effectively integrated with any ASV system without need-
ing additional joint optimisation. Second, the integrated system
is robust against attacks from various state-of-the-art statisti-
cal parametric speech synthesis and voice conversion systems.
However, it is still vulnerable to the unit selection synthesis
(SS-MARY) spoofing attack. This suggests that new counter-
measures are needed specifically for waveform selection-based
spoofing attacks. Third, although our stand-alone ASV systems
achieve better performance for male than for female speakers,
the integrated systems work equally well for both. In contrast,
others have reported integrated systems working better for male
speakers than for female speakers [40].

In general, by using the proposed fused countermeasure, the
FARs of ASV systems under spoofing attack are reduced sig-
nificantly. This indicates that the countermeasure is effective in
detecting spoofing attacks.

E. Human Versus Machine

To complement the comparisons already presented, we
now benchmark automatic (machine-based) methods against
speaker verification by human listeners. To do this, three lis-
tening tests were conducted: two speaker verification tasks and
one spoofing detection task. The first verification task con-
tained only human speech signals, the second verification task
contained human speech but all test signals were artificial (syn-
thetic and voice-converted speech). The third task, a detection
task, contained both human and artificial speech signals and the
goal for the listener was to correctly discriminate these signals.
All three tasks covered the 46 target speakers in the evaluation
set of the SAS corpus.

In order to encourage listeners to engage with the tasks to the
best of their ability, they were presented as role-play scenar-
ios. The human listening tasks were designed to be as similar
to the ASV tasks as possible (to facilitate direct comparisons),
whilst taking into account listener constraints such as fatigue or
memory limitations. Listening protocols were inspired by the

ones used in [75] and the experiments were carried out via a
web browser. In total, 100 native English listeners took part in
the experiments. They were seated in sound-isolated booths and
listened to all samples using Beyerdynamic DT 770 PRO head-
phones. Each listener performed three tasks and, on average, it
took about an hour to complete the experiment. We only report
results from listeners who completed all sessions in each task.

Task 1: Speaker Verification of Human Speech: In the
speaker verification task, listeners were asked to imagine
they were responsible for giving people access to their bank
accounts. They were informed that they would only have a short
recording of a person’s voice to base their judgement on. It
was stressed that it was important to not give access to “impos-
tors” but equally important that access was given to the “bank
account holder”.

The listeners were given five sentences from each target
speaker to familiarise themselves with the voice. After listen-
ing to the training samples, they were given 21 trials to judge as
“same” or “different.” The trials were pairs of samples which
include a reference and a test sample. This was repeated for
three different target speakers. In this task, each target speaker
was judged by 5 listeners. The number of targets versus non-
targets varied per speaker to keep listeners from keeping count
for individual speakers. On average there were 10 targets and
11 non-targets per speaker. Genders were not mixed within a
trial.

Listeners recognised impostors as genuine targets 2.39% of
the time (FAR) while 9.38% of genuine trials were misclassified
as impostors (FRR). Comparing with the baseline ASV per-
formance in Table V, the results demonstrate that the speaker
verification performance of humans is not as good as that of
the best automatic systems. For example, PLDA-5 gives a FAR
around 1.5% for both male and female speakers. This finding is
similar to that in [76] for the NIST SRE 2008 dataset.

Task 2: Speaker Verification of Artificial Speech: In the sec-
ond task, listeners were asked to decide whether an artificial
voice17 sounded like the original speaker’s voice. The listeners
were informed that the artificial voice would sometimes sound
quite degraded but were asked to ignore the degradations as
much as possible. Additionally, they were told that there would
be artificial voices that were supposed to sound like the intended
speaker as well as artificial voices that were not supposed to
match the original speaker. The task was framed as “Your chal-
lenge is to decide which of the artificial voices are based on
the ‘bank account holder’s voice’ and which are based on an
‘impostor’s voice.’ ”

As in the first task, listeners were given five natural speech
samples from the intended speaker to familiarise themselves
with the voice. After listening to these training samples, sub-
jects were presented with pairs of reference and test samples to
judge as “same” or “different.” It was made clear to the listen-
ers that the test sample would be an artificial voice. Each target
speaker was judged by 5 listeners. For each target speaker there
were 65 trials (13 systems, each presented 5 times). On aver-
age there were 39 targets and 26 non-targets per speaker. Once
again gender was not mixed within any of the trials.

17Artificial was explained to the listeners as being “produced by a machine,
computer-generated, for example a synthetic voice”.
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TABLE VII
FALSE ACCEPTANCE RATES (FARS) ON THE EVALUATION SET FOR THE TWO VARIANTS (5 AND 50) OF THREE SPEAKER VERIFICATION SYSTEMS

WITH INTEGRATED COUNTERMEASURE. THESE ASV SYSTEMS ARE EACH BASED ON A GAUSSIAN MIXTURE MODEL WITH UNIVERSAL BACKGROUND

MODEL (GMM-UBM), JOINT FACTOR ANALYSIS (JFA) OR PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS (PLDA). THE DECISION THRESHOLD IS

SET TO THE ASV EQUAL ERROR RATE (EER) POINT ON THE DEVELOPMENT SET USING ONLY HUMAN SPEECH

The results are presented in Table VIII (second column). The
acceptance rate is not directly comparable with the automatic
results presented in Table V but the relative differences across
spoofing algorithms are comparable18.

It can be observed that SS-MARY gives the highest accep-
tance rate (i.e., listeners said that it sounded like the original
speaker), while VC-C1 gives the lowest acceptance rate – this
pattern is similar to that in the ASV results where SS-MARY
achieves relatively high FARs and VC-C1 relatively low FARs.
The results also indicate that spoofing systems that use more
training data generally achieve higher acceptance rates with
human listeners, mirroring what we saw earlier in the ASV
results in Section V-B. An interesting difference between the
ASV and human listener results is that, for human listeners, the
use of higher sampling rate speech by some spoofing systems
(SS-SMALL-48, SS-LARGE-48) leads to a lower acceptance
rate than for lower sampling rate training data (SS-SMALL-
16, SS-LARGE-16). This suggests that, whilst these types of
spoofing systems (SS: statistical parametric speech synthe-
sis) are able to generate information above 8 kHz that con-
tributes to improved naturalness [51], listeners judge it as being
more dissimilar to the natural speaker. This similarity obser-
vation is different from that in [51], where speaker-dependent
speech synthesis is examined. An informal listening test gives
the impression that SS-LARGE-48/SS-SMALL-48 produces
more natural speech than SS-LARGE-16/SS-SMALL-16, as
expected. However, as the reference target speech is a clean
recording without any distortion, we speculate that it is more
challenging for listeners to decide on the speaker similarity of
the poor quality, buzzy-sounding speech of SS-LARGE-16/SS-
SMALL-16.

18In Task 2, the acceptance rate means the percentage of genuine speech
recognised as the original speaker. The genuine speech is artificial speech using
the target speaker’s voice as the reference for adaptation or voice conversion,
and the impostor speech is also artificial speech but using a non-target speakers
voice as the reference for adaptation or voice conversion. When computing the
acceptance rate, zero is used as the threshold. On the other hand, the FAR in
Table IV is the percentage of spoofed trials accepted as genuine. When comput-
ing the FAR, the threshold is determined at the EER point on the non-spoofed
trials.

TABLE VIII
TASK 2 –SPEAKER VERIFICATION (ARTIFICIAL)– AND TASK

3—SPOOFING DETECTION—RESULTS

Task 3: Detection: In the final task, listeners were asked to
judge whether a speech sample was a recording of a human
voice, or a sample of an artificial voice. The challenge to the lis-
teners was formulated as: “Imagine an impostor trying to gain
access to a bank account by mimicking a person’s voice using
speech technology. You must not let this happen. Your chal-
lenge in this final section is to correctly tell whether or not the
sample is of a human or of a machine.”

Listeners were again given some training speech signals.
They listened to five samples of human speech from one
speaker (not present in the detection task) and five examples of
artificial speech generated using five known spoofing systems.
At this point, the listeners were informed that the training sam-
ples did not cover all possible types of artificial speech. In Task
3, there were 130 samples (65 human, 65 artificial (13 × 5)),
and those samples were randomly selected from the evaluation
set for each listener. 84 listeners participated in the test.

The human detection results are presented in Table VIII
(third column). In general, human listeners detect spoofing
less well than most of the automatic approaches presented in
Table VI. For most spoofing systems, the automatic approaches
give FARs below 1%, while human listeners have FARs above
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4%. However, humans are much better than any of the auto-
matic countermeasures (except PP) in detecting SS-MARY.
Most of the countermeasures exhibit FARs in excess of 80%
for SS-MARY, while the FAR of human listeners is only 8%.

VI. DISCUSSION AND FUTURE WORK

In this section, we summarise the findings in this work, and
also discuss some of its limitations. Both the findings and the
limitations suggest areas needing further research.

A. Research Findings

The main findings from this study are:
• All three classical ASV systems: GMM-UBM, JFA and

PLDA systems are vulnerable to all the spoofing methods
considered, with the exception of VC-C1. This confirms
the findings of previous studies that only considered one
or two spoofing algorithms. This also shows the impor-
tance of developing spoofing countermeasures to secure
ASV systems.

• The effectiveness of speech synthesis and voice conver-
sion spoofing are comparable. Previous studies employed
various databases for each attack which made direct
comparisons of effectiveness across attacks difficult or
impossible. The standardised protocol that we propose
here, using our SAS database, allows direct comparisons.

• When higher sampling rate and/or more training data are
available to train spoofing systems, FARs of ASV sys-
tems increase significantly, as expected. This indicates
that ASV systems are more vulnerable to attackers who
have access to better quality and/or greater quantity of
training data.

• Generally, the spoofing countermeasures proposed in
this work perform well in detecting statistical paramet-
ric speech and voice conversion attacks. However, they
mostly fail to detect rather straightforward waveform
concatenation, as in the case of the SS-MARY attack.
Because SS-MARY directly concatenates waveforms in
the time-domain, the resulting spoofed speech has no
distortions in the phase domain (except perhaps at the
concatenation points); so, phase-based countermeasures
are not a good way to detect such a spoofing attack.

• ASV systems have reached a point where they routinely
outperform ordinary humans19 on speaker recognition
and spoofing detection tasks. However, humans are still
better able to detect waveform concatenation. An obvious
practical approach at the current time, for example in call-
centre applications, would be to combine the decisions of
both human and automatic systems.

B. Limitations and Future Directions

We suggest future work in ASV spoofing and countermea-
sures along the following lines:

• More diverse spoofing materials: The current SAS
database is biased towards the STRAIGHT vocoder, and

19It would be interesting in the future to use either ‘super recognisers’
or forensic speech scientists, if we could access sufficient numbers of such
listeners.

only one type of unit selection system was used to gen-
erate the waveform concatenation materials. Moreover,
replay attack – which does not require any speech pro-
cessing knowledge on the part of the attacker – was not
considered here. A generalised countermeasure should be
robust against all spoofing algorithms and any vocoder.
The development of generalised countermeasures might
be accelerated by collecting more diverse spoofing mate-
rials. As the amount of spoofing materials increases, ASV
systems can access more representative prior information
about spoofing, and the security of ASV systems should
be enhanced as a result.

• Truly generalised countermeasures: The proposed
countermeasures did not generalise well to unknown
attacks, and in particular to the SS-MARY attack. This
is because the proposed countermeasures were biased
towards detecting phase artefacts. To detect the SS-
MARY attack or similar waveform concatenation attacks,
we suggest further development of pitch pattern-based
countermeasures. Discontinuity detection for concatena-
tive speech synthesis [77] might also be useful in inspiring
novel countermeasures against such attacks. Lastly, novel
system fusion methods might also be a way to imple-
ment generalised countermeasures. A good fusion method
should be able to benefit from all the individual coun-
termeasures. Our proposed fusion method failed to take
advantage of the strengths of the pitch pattern counter-
measure, for example.

• Noise or channel robustness: The work here delber-
ately focussed on clean speech without significant noise
or channel effects. To make the proposed countermea-
sures appropriate for practical applications, it would of
course be important to take channel and noise issues into
consideration.

• Text-dependent ASV: The current work assumes text-
independent speaker verification. To make systems suit-
able for other voice authentication applications, spoofing
countermeasures for text-dependent ASV must also be
developed.

VII. CONCLUSIONS

All existing literature that we are aware of in the areas
of ASV spoofing and anti-spoofing, report results for just
one or two spoofing algorithms, and generally assumes prior
knowledge of the spoofing algorithm(s) in order to implement
matching countermeasures. As discussed in [8], the lack of a
large-scale, standardised dataset and protocol was a fundamen-
tal barrier to progress in this area. We hope that this situation
is now rectified, by our release of the standard dataset SAS,
combined with the benchmark results presented in this paper.

To acheive this, speech synthesis, voice conversion, and
speaker verification researchers worked together to develop
state-of-the-art systems from which to generate spoofing mate-
rials, and thus to develop countermeasures. The SAS corpus
developed in this work is publicly released under a CC-BY
license [78]. We hope that the availability of the SAS corpus
will facilitate reproducible research and as a consequence drive
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forward the development of novel generalised countermeasures
against speaker verification system spoofing attacks.
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