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Abstract—In large population speaker identification (SI) systems, likeli-
hood computations between an unknown speaker’s feature vectors and the
registered speaker models can be very time-consuming and impose a bot-
tleneck. For applications requiring fast SI, this is a recognized problem and
improvements in efficiency would be beneficial. In this paper, we propose a
method whereby GMM-based speaker models are clustered using a simple

-means algorithm. Then, during the test stage, only a small proportion
of speaker models in selected clusters are used in the likelihood computa-
tions resulting in a significant speed-up with little to no loss in accuracy.
In general, as the number of selected clusters is reduced, the identification
accuracy decreases; however, this loss can be controlled through proper
tradeoff. The proposed method may also be combined with other test stage
speed-up techniques resulting in even greater speed-up gains without addi-
tional sacrifices in accuracy.

Index Terms—Clustering methods, speaker recognition.

I. INTRODUCTION

The objective of speaker identification (SI) is to determine which
voice sample from a set of known voice samples best matches the char-
acteristics of an unknown input voice sample [1]. SI is a two-stage
procedure consisting of training and testing. In the training stage,
speaker-dependent feature vectors are extracted from a training
speech signal and a speaker model is built for each speaker’s fea-
ture vectors. Normally, SI systems use the Mel-frequency cepstral co-
efficients (MFCCs) as the feature vector and a Gaussian mixture
model (GMM) of the feature vectors for the speaker model. The GMM
is parameterized by the set where are the weights,
are the mean vectors, and are the covariance matrices of the
Gaussian component densities of the GMM. In the SI testing stage,

feature vectors are extracted from a test signal (speaker un-
known), scored against all speaker models using a log-likelihood cal-
culation, and the most likely speaker identity decided according to

(1)

In assessing an SI system, we measure identification accuracy as the
number of correct identification tests divided by the total number of
tests. For many years now, GMM-based systems have been shown to
be very successful in accurately identifying speakers from a large pop-
ulation [1], [2].

In speaker verification (SV), the objective is to verify an identity
claim. Although the SV training stage is identical to that for SI, the
test stage differs. In the SV test stage, for the given test feature vec-
tors a likelihood ratio is formed from the claimant model and that of
a background model. If the likelihood ratio is greater than a threshold

Manuscript received February 13, 2008; revised November 18, 2008. Current
version published April 03, 2009. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Simon King.

The authors are with the Klipsch School of Electrical and Computer Engi-
neering, New Mexico State University, Las Cruces, NM 88003 USA (e-mail:
vijendra@nmsu.edu; pdeleon@nmsu.edu).

Digital Object Identifier 10.1109/TASL.2008.2010882

value, the claim is accepted otherwise it is rejected. In SV, maximum
a posteriori (MAP) adapted speaker models from a universal back-
ground model (UBM) with likelihood normalization are normally used
[3]. There are also more advanced techniques used in SV such as sup-
port vector machine (SVM) generalized linear discriminant sequence
(GLDS) [4] and SVM-supervectors [5].

In this correspondence, we consider the problem of slow speaker
identification for large population systems. In such SI systems (and SV
systems as well), the log-likelihood computations required in (1) have
been recognized as the bottleneck in terms of time complexity [2], [6].
Although accuracy is always the first consideration, efficient identifi-
cation is also an important factor in many real-world systems and other
applications such as speaker indexing and forensic intelligence [7], [8].

Among the earliest proposed methods to address the slow SI/SV
problem were pre-quantization (PQ) and pruning. In PQ, the test feature
vectors are first compressed through subsampling (or another method)
before likelihood computations [9]; fewer feature vectors directly trans-
late into faster SV/SI. It has been found that reducing the test feature
vectors by a factor as high as 20 does not affect SV performance [9].
Application of PQ in order to speed-up SI was investigated in [2] and
was found to result in a real-time speed-up factor of as high as 5 with
no loss in identification accuracy using the TIMIT corpus. In pruning, a
small portion of the test feature vectors is compared against all speaker
models and those speaker models with the worst scores are pruned out
of the search space [10]. In subsequent iterations, other portions of the
test feature vectors are used and speaker models are scored and pruned
until only a single speaker model remains resulting in an identification.
Using the TIMIT corpus, a speed-up factor of 2 has been reported
with pruning [2]. Variants of PQ and pruning as well as combinations
of the methods applied to efficient SI/SV were extensively evaluated
using TIMIT and NIST1999 corpora in [2]. In [5], a GMM supervector
kernel for SVM-based SV was proposed in which the test speech is
adapted to a UBM and the mean vectors of the adapted UBM are used
as supervectors. A kernel is designed in which an inner product be-
tween the target model and supervector is computed to obtain a score.
Though the scoring is fast, test stage adaptation may require significant
time but details are not provided.

In [11], a hierarchical speaker identification (HSI) was proposed
that uses speaker clustering which, for HSI purposes, refers to the
task of grouping together feature vectors from different speakers
and modeling the superset, i.e., a speaker cluster GMM. (In most
other papers such as [12], the term “speaker clustering” refers to
the task of grouping together unknown speech utterances based on
a single speaker’s voice characteristics which is entirely different
than what is done in [11].) In HSI, a non-Euclidean distance measure
between an individual speaker’s GMM and the cluster GMMs is
used to assign speakers to a cluster. Feature vectors for intra-cluster
speakers are recombined, cluster GMMs are rebuilt, distance measures
are recalculated, and speakers are reassigned to “closer” clusters.
The procedure iterates using the ISODATA algorithm until speakers
have been assigned to an appropriate cluster. During the test stage,
the cluster/speaker model hierarchy is utilized: first log-likelihoods
are computed against the given cluster GMMs in order to select the
appropriate cluster for searching. Then log-likelihoods are computed
against those speaker models in the cluster in order to identify the
speaker.

Using a 40-speaker corpus, HSI requires only 30% of the calcula-
tion time (compared to conventional SI) while incurring an accuracy
loss of less than 1% (details of the corpus and procedure for timing
are not described). Unfortunately, HSI has a number of drawbacks in-
cluding an extremely large amount of computation (which the authors
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acknowledge) required for clustering. Because of this required compu-
tation, the HSI method does not scale well with large population size.
Although HSI was shown to speed up SI with little accuracy loss, the
small number of speakers used in simulation does not provide any in-
dication of how accuracy would degrade with much larger populations
[13].

A similar idea for reducing a search space using clusters or classes
has long been used in the area of content-based image retrieval (CBIR)
[14]. In this application, only those images within a few predetermined
classes that are similar to the query image are searched rather than
searching the entire image database. Although hierarchical and struc-
tural arrangements of GMM-UBMs have been proposed in order to
speed-up SV including those in [15], [16], it appears that [11] was one
of the first to use clusters for speeding up SI. Finally, speaker clus-
ters (as defined in [12]) have been used for fast speaker adaptation in
speech recognition applications [17], speaker indexing [18], and in the
open-set speaker identification (OSI) problem [19].

In a recent publication, a different approach toward efficient SV/SI
has been investigated. In [6], the authors approximate the required log-
likelihood calculations in (1) with an approximate cross entropy (ACE)
between a GMM of the test utterance and the speaker models; speed-up
gains are realized through reduced computation in ACE. The authors
acknowledge potential problems with constructing a GMM of the test
signal and offer methods to reduce this bottleneck. Also, if the test
signal is short the GMM may not be accurate. Evaluation of MAP-ACE
to the baseline SV system indicates no significant accuracy differences;
however, no information regarding actual speed-up (as compared to the
baseline SV system) is given [6]. SV using MAP-ACE with Gaussian
pruning, results in a speed-up factor of 3 , 8 with a 0.1%, 0.66%
degradation in equal error rate (EER) when compared to MAP-ACE
with no pruning. For SI systems (VQ-tree-based, GMM-UBM) using
ACE with top- pruning, the authors report a theoretical speed-up of
43 for 100 speakers; however, accuracy results and actual speed-ups
are not provided [6].

In this paper, the focus is strictly on efficient speaker identification
and we propose the use of training stage clustering methods in order
to reduce test stage log-likelihood calculations. Our work differs from
[11] in two regards. First, rather than iteratively grouping feature vec-
tors from different speakers and modeling the whole cluster with a
GMM, we form clusters directly from the individual speaker models
which we term “speaker model clustering.” This difference is impor-
tant as it allows utilization of the simple -means algorithm and leads
to a scalable method for clustering which we demonstrate using large
population corpora. Second, we investigate searching more than one
cluster so that any loss in identification accuracy due to searching too
few clusters can be controlled; this allows a smooth tradeoff between
speed and accuracy. Our work also differs from [6] in that we make no
approximations to (1) relying instead on a reduction in the number of
speaker models that (1) has to be calculated against for the speed-up.
In addition, whereas the majority of the results presented in [6] are for
SV, our focus is on efficient SI. Finally, since the proposed speaker
model clustering is applied at the training stage (after speaker mod-
eling), it can be combined with test stage speed-up methods such as
PQ, pruning, and ACE, resulting in even greater speed increases.

This paper is organized as follows. In Section II, we describe appli-
cation of the -means algorithm for clustering GMM speaker models
and criteria for which clusters to search. In Section III, we describe the
experimental evaluation and provide results using several large popula-
tion corpora with different channels (TIMIT, NTIMIT, and NIST 2002)
[2], [6]. In Section IV we conclude the article.

II. SPEAKER MODEL CLUSTERING

In an SI system for a large and acoustically diverse population, only
a few speaker models actually give large log-likelihood values for (1).
In fact, the basis for speaker pruning is to quickly eliminate speaker
models for which it is clear the log-likelihood score is going to be low
thus reducing unnecessary computation in (1) [10]. In this correspon-
dence, we propose that speaker models be clustered during the training
stage (after speaker modeling); during the test stage only those clus-
ters likely to contain a high-scoring speaker model will be considered.
Ideally, the speaker models are clustered according to a distance mea-
sure based on log-likelihood due to the decision rule in (1). However, a
direct method of determining clusters, taking into account all speaker
models and training feature vectors (which would provide the log-like-
lihood measure), leads to a difficult nonlinear optimization problem.

In order to develop clustering methods which are based on the
-means algorithm and can scale with population size, we propose

three configurations based on a cluster center or centroid definition
and a distance measure from to the center or centroid; a fourth
configuration uses a distance measure based on an alternate speaker
model. In addition, each configuration includes a criterion for cluster
selection.

A. Euclidean Distance-Based Clustering

The first configuration is based on a Euclidean distance measure
and designed for simplicity. We begin by representing the GMM-based
speaker model simply as a point in -dimensional space determined by
the weighted mean vector (WMV) [20]

(2)

The WMV can be thought of geometrically as the centroid of the
speaker model and gives an approximation for position in the speaker
model space. The WMV can also be thought of as a vectorization of
the speaker model. From (2), one can define the centroid of a cluster
of GMM speaker models as

(3)

where is the WMV for , and is the number of speaker models
in the cluster. Fig. 1 gives an illustration of the speaker model space. We
use a Euclidean distance measure from speaker model to the cluster
centroid defined by [20]

(4)

The algorithm for speaker model clustering using the centroid defini-
tion in (3) and distance measure in (4) is given in Algorithm 1.

Algorithm 1 Euclidean distance-based speaker model clustering

1: Initialize cluster centroids , using randomly
chosen speaker models.

2: Compute distance using (4) from to , .
3: Assign each to the cluster with the minimum distance.
4: Compute new cluster centroids using (3).
5: Goto step 2 and terminate when cluster membership does not

change.
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Fig. 1. Space of speaker models, clusters and three cluster centroid definitions.

In order to select the cluster that will be searched in the test stage,
the average of the test feature vectors from the unknown speaker is
computed as

(5)

and cluster whose centroid is nearest (Euclidean distance) to this
average is selected as

(6)

B. Kullback–Leibler, GMM-Based Clustering

Equations (2)–(4) provide a simple approach toward -means-based
speaker model clustering; however, the SI decision in (1) is based on
log-likelihood and not on a Euclidean distance measure to the GMM.
If the centroid is based on a distributional parameterization then a more
appropriate distance measure such as Kullback–Leibler (KL) diver-
gence may be used. Therefore, for the second configuration, we define
the cluster center as the GMM speaker model which is nearest to

(7)

This speaker model, called the “cluster representative” (CR) and illus-
trated in Fig. 1, serves to reduce the cluster to its most representative
element [21]. Although we would like to use KL divergence from

to as the distance measure in -means, there is currently
no known closed-form expression between GMMs. However, one
proposed method to approximate KL divergence between two speaker
models uses actual acoustic data (feature vectors) [22]. Following
the approach in [22], we propose a second distance measure used for
speaker model clustering by approximating the KL divergence from

to with

(8)

where is the number of training feature vectors and are the
training feature vectors for speaker . The use of a CR overcomes the

problem of the centroid not having distributional parameters to com-
pute KL divergence. The algorithm for speaker model clustering using
the cluster center definition in (7) and distance measure in (8) is given
in Algorithm 2. We refer to this as “KL GMM-based clustering.”

Algorithm 2 KL GMM-based Speaker model clustering

1: Initialize cluster centers , using randomly
chosen speaker models.

2: Compute distance using (8) from to , .
3: Assign each to the cluster with the minimum distance.
4: Compute and new cluster centers using (7).
5: Goto step 2 and terminate when cluster membership does not

change.

Alternatively, we can use the symmetric version of (8) to measure
“distance” from to [23]

(9)

where are the training feature vectors for cluster representative .
The algorithm for clustering using the above is identical to Algorithm
2 except that in Step 2, distance is computed with (9). We refer to this
as “KL (symmetric) GMM-based clustering.”

In the test stage, we select the cluster whose log-likelihood, mea-
sured against , is large [20]

(10)

C. Kullback–Leibler, Gaussian-Based Clustering

In the third configuration, we define the cluster center with an -di-
mensional Gaussian distribution of the speakers’ (within
the cluster) training feature vectors where is the mean vector and is
the covariance matrix. We use KL divergence as the distance measure
from to cluster center in -means, approximated as [22]

(11)

where is the th component density of . The algo-
rithm for speaker model clustering using the Gaussian cluster center
definition and distance measure in (11) is given in Algorithm 3.

Algorithm 3 KL Gaussian-based Speaker model clustering

1: Randomly assign speakers to one of clusters.
2: Using training feature vectors of intra-cluster speakers, compute

, for cluster center .
3: Compute distance using (11) from to , .
4: Assign each to the cluster with the minimum distance.
5: Goto step 2 and terminate when cluster membership does not

change.
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In the test stage, we select the cluster whose log-likelihood, mea-
sured against , is large

(12)

D. Log-Likelihood, Gaussian-Based Clustering
In the fourth configuration, the cluster center is defined as in

Section II-C and are modeled as , where is the
mean vector and is the covariance matrix. The distance measure
is based on the log-likelihood between (modeled as ) and
cluster center

(13)

We use a minus log-likelihood for proper clustering based on minimum
distance or equivalently, maximum log-likelihood. The algorithm for
clustering using the above configuration is similar to Algorithm 3 ex-
cept that in step 3, distance is computed as in (13) and in step 4, is
now . In the test stage, we select the clusters to search according to
(12).

E. Searching a Subset of Clusters
Rather than selecting a single cluster to search using criteria in (6),

(10), or (12) we can also use a subset of clusters ranked according to
these equations. Using a subset of clusters allows a smooth tradeoff
between accuracy loss (due to searching too few clusters) and speed.
All three cluster selection methods provide relatively fast and efficient
ways to select clusters for searching which is an important consider-
ation for test stage processing. Finally, we note that a GMM of the
test feature vectors could be constructed as in [6] and clusters se-
lected according to (9) using for . However, we found the time
in computing the test GMM with the iterative EM algorithm as well
as likelihood calculations required for cluster selection to exceed the
time required when using the above cluster selection methods and not
produce any better results. Furthermore, if the test signal is short, the
GMM may not be sufficiently accurate enough to properly select clus-
ters. Both of these issues were described in [6].

III. EXPERIMENTS AND RESULTS

Our SI system is based on the system in [2] in order to facilitate
comparisons. To demonstrate the applicability of the methods proposed
in Section II to a wide variety of GMM-based SI systems, we have
added to this system some additional elements such as delta MFCCs,
cepstral mean subtraction (CMS), and RASTA processing depending
on the corpus being used. Specifically, our baseline system uses an
energy-based voice activity detector to remove silence; feature vec-
tors composed of 29 MFCCs for TIMIT and 13 MFCCs + 13 delta
MFCCs for NTIMIT and NIST 2002 extracted every 10 ms using a
25-ms window; CMS and RASTA processing on NIST 2002 [24]; and

component densities for the GMMs. For TIMIT/NTIMIT,
we use approximately 24-s training signals and 6-s test signals and

Fig. 2. Speaker identification accuracy versus percentage of clusters searched
for (a) TIMIT, (b) NTIMIT, and (c) NIST 2002.

for NIST 2002 (one speaker detection cellular task) we use approx-
imately 90-s training signals and 30-s test signals. With a complete
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TABLE I
AVERAGE SPEED-UP FACTORS USING KL GMM-BASED CLUSTERING RELATIVE TO BASELINE SYSTEM.

SI ACCURACIES FOR TIMIT, NTIMIT, AND NIST 2002 ARE NOTED FOR EACH COLUMN

calculation of (1), i.e., full search, our system has baseline identifica-
tion accuracy of 99.68%, 69.37% for the 630-speaker TIMIT, NTIMIT
corpus as shown by the dashed lines in Fig. 2(a) and (b), respectively.
These values agree with values published in recent literature [2]. For
the 330-speaker NIST 2002 corpus, the baseline accuracy is 89.39% as
shown by the dashed line in Fig. 2(c).

A. Evaluation of Proposed Clustering Methods

We partitioned the speaker model space into clusters using a range
of values for (guided by the silhouette index) and measured SI ac-
curacy rates. We found to give good performance with the
TIMIT/NTIMIT corpora and with the NIST 2002 corpus. We
also found that the KL Gaussian-based clustering was very sensitive
to initialization. In order to evaluate the proposed approach, we mea-
sure SI accuracy as a function of the percentage of clusters searched
as shown in Fig. 2. This percentage is an approximation to the search
space reduction in (1), since the number of speaker models in each
cluster are not exactly the same but are more or less equally distributed.
In evaluating the four configurations, we find that KL GMM-based
clustering generally produces the highest SI accuracy results. For this
configuration, we are able to search as few as 10% of the clusters and
incur a 0.95%, 2.2%, and 1.4% loss in SI accuracy with the TIMIT,
NTIMIT, and NIST 2002 corpora respectively; searching 20% of the
clusters resulted in no accuracy loss.

B. Speed-Up Results

As described in Section I, the proposed method of speaker model
clustering is applied during the training stage (after speaker modeling)
and can be combined, as have other proposed speed-up methods, with
test stage techniques such as PQ and pruning [2], [6]. Although many
sophisticated pruning algorithms exist for both SV and SI, we use a
simple static pruning algorithm which eliminates half of the speaker
models at each pruning stage in order to illustrate the potential gain
[2]. For this work, we benchmark using KL GMM-based clustering
since the SI accuracies were the highest; KL Gaussian-based clustering
was slightly faster but accuracies, as shown in the previous subsection,
were lower. We searched 10% and 20% of the clusters and adjusted the
PQ decimation factor and number of pruning stages so that the
SI accuracies were the same over the testing methods. The speed-up
factors (shown in Table I) were computed by carefully timing the test
stage for a simulation involving the complete corpus and determining
the average time for a single SI. These actual times were then normal-
ized against the average time for a baseline SI (no clustering, PQ, or
pruning). Speed-up gains using only PQ and/or pruning can be eval-
uated from the data in column 4 of Table I since searching 100% of
the clusters amounts to using all speaker models. When using 10%,
20% of the clusters, the search space is reduced by a factor of 10 ,
5 and the realized speed-up factor (average of three corpora) is 8.7 ,
4.4 , respectively. The difference between the search space reduction
and realized speed-up gain is due to additional computation involved
in the cluster section and other overheads. Gains using only the clus-
tering method are on par with gains using only PQ or pruning; adding

PQ and/or pruning to the clustering method further speeds up SI con-
sistent with previous research results [2].

IV. CONCLUSION AND FUTURE RESEARCH

In speaker identification, log-likelihood calculations in the test stage
have been recognized as the bottleneck in terms of time complexity.
In this paper, we have proposed a method whereby GMM-based
speaker models are clustered using a simple -means algorithm. Then,
during the test stage, only a small proportion of speaker models in
selected clusters are used in the likelihood computations resulting in a
significant speed-up with little to no loss in accuracy. For the TIMIT,
NTIMIT, and NIST 2002 corpora, we are able to search as few as 10%
of the speaker model space and realize an actual speed-up of 8.7
with only a small loss in accuracy; searching 20% or more clusters
results in accuracies equivalent to the full search. Using the proposed
clustering method together with other speed-up methods results in
actual speed-up factors as high as 74 with no loss in accuracy;
speed-up factors as high as 149 are possible with a slight loss in
accuracy.
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