
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 1

Falls Risk Classification of Older Adults Using
Deep Neural Networks and Transfer Learning

Matthew Martinez, Phillip L. De Leon, Senior Member

Abstract—Prior research in falls risk classification using iner-
tial sensors has relied on the use of engineered features, which
has resulted in a feature space containing hundreds of features
that are likely redundant and possibly irrelevant. In this paper,
we propose using fully convolutional neural networks (FCNNs)
to classify older adults at low or high risk of falling using
inertial sensor data collected from a smartphone. Due to the
limited nature of older adult inertial gait data sets, we first pre-
train the FCNN models using a publicly available data set for
pedestrian activity recognition. Then via transfer learning, we
train the network for falls risk classification. We show that via
transfer learning, our falls risk classifier obtains an area under
the receiver operating characteristic curve of 93.3%, which is
10.6% higher than the equivalent model trained without the
use of transfer learning. Additionally, we show that our method
outperforms other standard machine learning classifiers trained
on features developed in prior research.

Index Terms—Multi-layer neural networks, machine learning,
accelerometers, gyroscopes

I. INTRODUCTION

Each year in the United States, 2.8 million adults over the
age of 65 are treated for fall-related injuries, which include
broken bones, hip fractures, and traumatic brain injuries [1].
Because of the quality of life and economic impacts related
to falling, considerable research effort has focused on falls
prevention [1], [2]. Extrinsic factors contributing to an increase
in falling include the home environment, medications, and
footware [3]. Intrinsic risk factors include gait and balance
disorders which have been found to contribute most to a
heightened falls risk [3]. Although there has been substan-
tial research focus on falls risk assessments [4], [5], their
intended use is for outpatient services [6] and do not allow
for continuous monitoring and measurement of gait. Gait can
be measured with 3-D motion capture systems or pressure
sensitive walkways, however, these systems can be intrusive
and/or expensive to deploy for long term use [7]. Instead,
low cost sensor platforms such as depth cameras [8], radio
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signal based methods [7], and inertial sensors [9] may be
better suited for gait monitoring. In particular, inertial sensors
are attractive due to the low cost of micro electro-mechanical
systems (MEMS) based inertial measurement units (IMUs)
which are now standard in smartphones and wearable devices.
IMUs have been shown to be useful for gait analysis [10] and
effective for falls prediction [9].

Deep learning has recently been applied to gait analy-
sis [11], [12] and gait disorder classification [13], [14].
Machine learning has also been shown to be effective for falls
prediction1. A review of inertial sensors and machine learning
for falls risk assessment can be found in [9]. From the papers
surveyed, the authors identified 130 unique features [9]. The
classification methods used in these studies include decision
trees, logistic regression, and support vector machine (SVM).
More recently, [16] used a wavelet transform of acceleration
measurements and barometric pressure to classify individuals
as fallers or non-fallers. In [17], the authors used 74 features
extracted from acceleration measurements of walking and
turning to classify individuals as non-fallers and prospective
fallers, i.e. a person who experienced a fall six-month af-
ter data collection. The best performance in this study was
achieved using random forests [17].

Three challenges exist in the current falls prediction re-
search. First, current research has focused on feature engi-
neering, which has resulted in a high dimensional feature space
where many features are likely redundant [15], [18]. Addition-
ally, feature engineering requires expert domain knowledge,
often fails to generalize to unseen data, and does not transfer
well to other domains and tasks [19]. Second, retrospective
falls history has been used by many researchers for label
assignment and the resulting models fail to capture changes in
gait mechanics leading up to a fall [9], [15], [18]. Third, many
models are trained on a low number of examples, which is a
result of the cost and time limitations of data collection [15]
leading to models that are less robust to noisy features and
labels, and are sensitive to overfitting.

In this paper, we propose using deep neural networks (DNN)
and transfer learning in order to address the three challenges
above for falls risk classification of older adults. We treat the
falls risk classification problem as a time series classification

1In this paper we make the clear distinction between “falls prediction” and
“falls risk.” The former refers to using data to predict whether a person has
fallen in the past and the latter refers to using data to assess a person’s risk of
falling in the future. For the purpose of data labeling, falls prediction uses the
terms “faller” and “non-faller”. These labels are associated with retrospective
falls history [15] and result in a mapping that is representative of past events.
Falls risk uses the terms “low risk” and “high risk” for data labeling and
results in a mapping that is representative of the risk of a future fall.
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task where the goal is to classify each measurement of gait
as being either low or high falls risk. Our contributions are as
follows. First, we show how to use readily-available pedestrian
activity data to pre-train a model which learns generalized
feature representations related to human pedestrian activities.
This partially addresses the problem of small data sets due
to the collection expense for falls risk prediction. Second, via
transfer learning we use the pre-trained fully convolutional
neural network (FCNN) as a feature extractor for falls risk
classification. Finally, from these models, we are able to
directly classify falls risk from inertial gait measurements from
a smartphone which may prove to be more economical than
more complex sensing systems for falls risk assessment.

The remainder of this paper is organized as follows. In
Section II, we describe the time series classification problem,
FCNNs and their elements, and the network architectures used
for this work. In Section III, we provide an overview of data
sources and processing including the publicly-available data
set used for pre-training, smartphone data, data labeling, and
data augmentation for time series data. In Section IV, we
describe the training and evaluation of each model and provide
classification results in Section V. In Section VI, we compare
our DNN for falls risk classification to other feature based
classifiers. Finally, we provide a discussion in Section VII and
conclusions in Section VIII.

II. TIME SERIES CLASSIFICATION

In a time series classification task, the goal is to classify a
given vector sequence, xt to one of C classes. In this paper,
we treat the IMU measurements as a vector sequence where
each element is a sample from an independent sensor axis.
The application of DNNs to human activity recognition has
focused on the use of deep convolutional neural networks
(CNN) [20]; recurrent neural networks (RNN) [21], [22];
and hybrid CNN-RNN architectures [23]. We elect to use
FCNNs [24] which have been shown to outperform RNNs on
the same task [25], have less trainable parameters, and have
achieved state-of-the-art results [26], [27]. Like RNNs, FCNNs
can efficiently learn local patterns at different time scales by
using dilated convolutions [25], [28] and can process arbitrary
length sequences since the fully connected layer used in deep
CNNs is omitted from the network architecture.

A. Dilated Causal Convolutions
One way of increasing the receptive field without an addi-

tional increase in computational cost, is through the use of a
dilated causal convolution [28]

(h ∗d x)n =

N−1∑
k=0

hk · xn−dk (1)

where h is a filter of length N , x is the input sequence, and
d ∈ Z+ is the dilation factor. Thus an effectively longer filter
is achieved by inserting zeros between filter coefficients as
illustrated in Fig. 1 and by increasing d exponentially with
increasing network depth, the network is able to learn rep-
resentations at longer time histories. Although this is similar
to pooling or strided convolutions, dilated causal convolutions
allow the output to remain the size as the input [28].

Fig. 1. Visualization of stacked dilated causal convolutional layers where the
value at the output layer depends only on the prior time points at longer time
scales. Adapted from [28].

Fig. 2. ParNet architecture consists of 6 FCNN blocks, 2 CNN blocks, and
a CNN softmax output layer. Each FCNN block is constructed from a dilated
causal convolutional layer, a BN layer, and a ReLU activation. The CNN
block uses the same elements but without dilation. Each FCNN layer learns
128 filters with a kernel width of 5 and 2 CNN blocks learn 256 filters with
a kernel width of 3. The CNN softmax output layer has a kernel width of 1.

B. ParNet: Pedestrian Activity Recognition Network

We modify the FCNN in [27] for pedestrian activity
recognition using the architecture in Fig. 2 and refer to
this architecture as ParNet (Pedestrian Activity Recognition
Network). ParNet consists of six causal dilated convolutional
blocks (FCNN block), two causal convolutional blocks without
dilation (CNN block), and a convolutional output layer with
softmax activation which allows the network to output a scalar
sequence of class predictions. This is similar to the FCNN
architecture used for semantic image segmentation [24]. Each
dilated causal convolutional block learns 128 filters with a
kernel width of 5. The dilation rate for each FCNN block is
2p−1 where p is the layer number, e.g. the first convolutional
block has a dilation rate of 1 and the sixth convolutional block
has a dilation rate of 32. The two convolutional blocks each
learn 256 filters with a kernel width of 3. The convolutional
output layer uses a kernel width of 1. Each FCNN block
consists of a 1-D dilated causal convolutional layer followed
by a batch normalization (BN) layer [29] and a Rectified
Linear Unit (ReLU) [30]. The CNN blocks use the same
architecture except without dilation. In Section V-B, we apply
transfer learning to ParNet for falls risk classification.

III. DATA

A. Human Activity Sensing Consortium Corpora

For this work we train ParNet using the Human Activity
Sensing Consortium (HASC) Pedestrian Activity Corpus 2016
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TABLE I
PROPORTION (IN %) OF EACH ACTIVITY IN HASC-PAC2016 FOR
SMARTPHONE PLACEMENT AT ALL LOCATIONS AND WAIST ONLY.

Placement Activity
Stay Walk Jog Skip Up Down

All (%) 17.9 17.3 17.1 17.2 15.4 15.2
Waist (%) 17.8 16.9 16.9 16.8 15.9 15.7

(HASC-PAC2016) [31], which consists of IMU measurements
from body-mounted smartphones and other devices manu-
factured by Samsung (58%), Apple (16%), ATR (13%), LG
(9%), and others (4%) [31]. The sensor measurements include
Walk, Jog, Skip, Upstairs, Downstairs, and Stay (no activity).
Sensor measurements of each activity were made using 3-
axis accelerometers, 3-axis gyroscopes as well as other sensors
placed on the waist (front or back pants pocket) (48%), arm
(18%), chest (11%), and other locations (23%) [31].

Measurements were collected from 510 individuals (120
female/390 male) ranging in age from 20 to 60 years (28.2±
12.9) with no health restrictions [31]. These are approximately
20 s in duration and are intended to be used as training
examples [31]. All together the data set contains 111,027
examples for all sensors types. We only consider examples
where both accelerometer and gyroscope measurements are
available, and have a sampling rate of 100 Hz. We also con-
sider measurements from all placement locations and sensor
measurements collected at the waist. In total, there are 23,345
available examples for all measurements from all locations
and 5,970 examples from measurements collected at the waist.
Table I provides the proportions of activity examples from the
total examples for the placements under consideration.

We post-processed the HASC-PAC2016 inertial data accord-
ing to [31], applied additional filtering for noise reduction,
and data augmentation. For each activity, we removed the first
2 s and last 5 s of signal. We then filtered out the gravity
component present in each axis with a zero-phase, fourth-order
Butterworth filter [32]. We found that a cutoff frequency of
fcutoff = 0.15 Hz worked best for HASC-PAC2016. Next we
applied a Savitsky-Golay filter (frame length = 51, order = 3)
to the inertial signals for noise reduction. Finally, we perform
data augmentation as follows. For each vector sequence, we
randomly select a subsequence with a uniformly distributed
duration from 3 s to 10 s (6.5 s mean), which improves the
network robustness to short variable length time series and
increases the size of our training set. Second, we randomly
rotate the data by either 0◦ or 180◦ on the x- and y- axes
and 0◦ or 90◦ on the z-axis in order to simulate various
smartphone orientations. This also improves the network’s
robustness to linear transforms of the data. The data set is
partitioned by sensor placement (all placement locations or
waist only placement) and sensor types (acceleration and
gyroscope or acceleration only). In total, the augmented data
set contains 47,125 examples (all placement locations) or
12,882 examples (waist only placement). We train our models
using the architecture described in Section II-B, with one
of the post-processed HASC-PAC2016 data subsets shown in
Table II.

TABLE II
SUBSETS OF THE AUGMENTED HASC-PAC2016 DATA SET USED FOR

TRAINING PARNET. THE DATA SET IS PARTITIONED BY SENSOR
PLACEMENT LOCATIONS AND TYPE.

Model Placement Sensor Type(s) Examples
ParNet(All, Accel) All Accel 47,125
ParNet(All, Accel + Gyro) All Accel + Gyro 47,125
ParNet(Waist, Accel) Waist Accel 12,882
ParNet(Waist, Accel + Gyro) Waist Accel + Gyro 12,882

B. Older Adult Smartphone Based Gait Data

Our data set of older adult gait data was collected in
partnership with the Electronic Caregiverr Company (ECG)
using the Mobile Falls-Risk Assessment Unit and is used for
falls risk classification. The average age of participants was
77.1± 7.4 years for female participants, 76.5± 6.6 years for
male participants, and 76.9± 7.1 years for all participants.

The sensor platforms used to collect data include a
TekScanr Walkway

TM
System and two Appler iPhoner 6

smartphones. The walkway is a low-profile floor mat that
measures kinetic, timing, and physical measurements of gait
and as described below, assists in labeling smartphone data as
low or high risk of falling. The two smartphones were used
to collect inertial measurements, sampled at 100 Hz, of an
individual’s gait using a custom data logging app [33]. The
use of the walkway and inertial sensor data for secondary data
analysis was approved by the New Mexico State University
Internal Review Board under reference number 15405.

During data collection, we mounted each smartphone near
the individual’s left and right hip bone using a gait belt and
holster clip. We recorded inertial gait data for 30 s while
the individual walked down the walkway, performed a turn
at the end of the walkway, and finally walked back down
the walkway returning to their starting location. We manually
removed the standing and turning segments from the data
and retained walking segments greater than 3.5 s which is
sufficient, based on our walkway measurements, to capture
three gait cycles. Overall, we collected 657 examples (436
female/221 male) of inertial gait data.

We label the smartphone gait segments as low or high
risk of falling as follows [34]. In prior research, five gait
variables (gait speed, cadence, stride length, percentage of
gait cycle spent in swing phase, and percentage of gait cycle
spent in double support) have been shown to contribute to an
increase in the risk of falling [35]. These gait variables for each
participant were directly measured using the walkway. The
data were modelled with a two component Gaussian mixture
model (GMM) where each component represents the low or
high falls risk class. The two responsibilities are computed
for each gait vector and a label is assigned to each gait
segment using the threshold in [34]. For more details on our
data labeling procedure, we refer the reader to [34]. Of the
smartphone gait segments, 422 examples were labeled as low
risk of falling and 235 were labeled as high risk of falling.
We address the imbalance of low and high risk examples in
Section V-B.
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TABLE III
CLASSIFIER ACC FOR EACH ACTIVITY IN HASC-PAC2016.

Model ACC (%)
Stay Walk Jog Skip Up Down

ParNet(All,Accel) 99.6 95.6 97.4 98.2 98.0 93.0
ParNet(All,Accel+Gyro) 99.8 96.5 98.0 98.4 97.7 94.5
ParNet(Waist,Accel) 99.7 97.7 98.7 97.6 97.6 98.7
ParNet(Waist,Accel+Gyro) 99.4 98.3 99.7 98.5 98.7 98.4

TABLE IV
SUMMARY OF PARNET PERFORMANCE (%). PARNET(?, ACCEL + GYRO)

OUTPERFORMED PARNET(?, ACCEL) AND PARNET(WAIST, �)
OUTPERFORMED PARNET(ALL, �)

Model Macro- Macro- Macro- ACC
PRC RCL F1

ParNet(All, Accel) 97.0 97.0 97.0 97.0
ParNet(All, Accel + Gyro) 97.4 97.5 97.4 97.4
ParNet(Waist, Accel) 98.3 98.4 98.3 98.3
ParNet(Waist, Accel + Gyro) 98.8 98.8 98.8 98.8

IV. PEDESTRIAN ACTIVITY RECOGNITION

A. Training

ParNet was implemented using the PyTorch deep learning
framework [36]. Model training and evaluation was performed
using two Nivida GeForcer GTX 980 GPUs. Each model
in Table II was trained for a pedestrian activity classification
task in a fully supervised manner for 250 epochs. Network
parameters were optimized using mini-batch gradient decent to
minimize cross-entropy loss [19], where each mini-batch con-
sisted of 64 examples. Optimization was performed using the
AMSGrad [37] variant of the Adam optimization method [38]
using a learning rate of 10−5 and an epsilon value of 10−4.
Additionally, to improve network generalization we employed
L2 regularization with a regularization coefficient of 10−2.

B. Evaluation

Each sequence is classified as one of six activities described
in Section III-A by calculating the mode over the sequence of
class predictions. Classification accuracy (ACC) for each activ-
ity for each model is given in Table III. Each model is assessed
using macro-precision (PRC), macro-recall (RCL), macro-F1,
and ACC, where macro scores are the average of individual
scores for the six classes. From Table IV, the overall best
model was ParNet(Waist, Accel + Gyro), with ACC of 98.8%.
ParNet(?, Accel + Gyro)2 outperformed ParNet(?, Accel) and
ParNet(Waist, �) outperformed ParNet(All, �).

In [31], the authors provide a benchmark for the HASC-
PAC2016 data set using a random forest classifier [39] and
features extracted from 2 s and 4 s frames of acceleration
data. Using this method, the authors achieved an ACC of
73.4% [96.9% (stay), 62.2% (walk), 87.1% (jog), 81.4%
(skip), 57.5% (up), 51.9% (down)] for all sensor locations
and 81.4% [96.0% (stay), 69.0% (walk), 91.3% (jog), 91.0%
(skip), 76.2% (up), 56.0% (down)] when the sensor was placed

2We use ? to denote both sensor placement options, i.e. all and waist
only and � to denote both sensor combinations, i.e. accelerometer only and
accelerometer and gyroscope.

Fig. 3. Illustration of the development of FallsNet classifier. FallsNet has a
similar architecture to ParNet with the exception of an additional GAP layer
after the CNN blocks and fully connected layer. The learned parameters from
the FCNN blocks in ParNet are transferred to FallsNet prior to training the
remaining layers with the older adult gait data. Whereas ParNet makes a
human activity classification decision every sample, FallsNet makes a low or
high risk of falling decision for every input sequence.

on the waist (right pocket). Additionally, the authors in [22]
achieved an ACC of 95.4% using a RNN [19]. The network
was trained on acceleration measurements from the HASC
2011 corpus [40]. Based on the publicly available benchmarks,
our FCNN architecture outperforms the random forest and is
comparable to the RNN. Thus, ParNet provides a foundation
for transfer learning for falls risk classification.

V. TRANSFER LEARNING FOR FALLS RISK
CLASSIFICATION

Transfer learning is a machine learning technique that uses
a model trained on one task for an auxiliary task, where the
data is in a different domain or the distribution differs from
the source task [19]. In deep learning, the architecture is first
trained with a sufficiently large data set and then a subset of
layers are re-trained using data from the auxiliary task. The
hypothesis of transfer learning as applied to DNNs is that the
initial layers learn generalized feature representations and as
the network depth increases, the representations become more
task specific [19]. Transfer learning can be useful when the
data from the auxiliary task is insufficient for the architecture
to generalize well and has been shown to be effective for
computer vision applications [41].

A. FallsNet: Falls Risk Classification Network

We modify ParNet (Fig. 2) for the falls risk classification
task as illustrated in Fig. 3. First, after the CNN block in
Layer 8, we add a global average pooling (GAP) layer [42]
and a fully connected layer with 256 hidden units. Second,
we replace the CNN softmax output layer (Layer 9) with a
fully connected softmax output layer, which produces a binary
decision of low or high risk of falling. The GAP layer provides
dimensionality reduction prior to classifying each sequence
and the fully connected layer uses a ReLU activation and
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incorporates dropout [19]. All parameters for layers 1 - 8
are the same as those given in Section II-B. We refer to this
architecture as FallsNet (Falls Risk Classification Network).

B. Transfer Learning Experiments and Training

We apply transfer learning by transferring the first l layers
in ParNet to the first l layers of FallsNet; the remaining 6− l
layers of FallsNet are randomly initialized. Then, FallsNet
is trained in a supervised fashion by only backpropagating
through the randomly initialized layers. We then vary l from
one to six to assess which model in Table II and how many
layers to transfer, provides the most generalized features and
ultimately the best model performance. In total, 24 models
were trained. In addition, two baseline models (accelerometer
only and accelerometer and gyroscope) using the older adult
gait data were trained without the use of transfer learning,
i.e. l = 0. Due to a class imbalance in the older adult gait
data, stratified sampling was performed during construction of
each mini-batch. This ensures that the number of positive and
negative examples in each mini-batch had the same proportion
as the training set. Additionally, we used a learning rate
scheduler that decreased the learning rate by 10−3 once the
validation loss did not continue to decrease for 10 epochs. A
stratified resampling scheme was used to partition the older
adult gait data into training and validation sets, where 80%
(525) of the examples were used for training and 20% (132)
were used for validation. Otherwise, training optimization and
regularization for FallsNet was identical to ParNet.

C. Evaluation

The four ParNet models in Table II and the transfer learning
experiments in Section V-B are evaluated using the area under
the receiver operating characteristic curve (AUC-ROC) [39].
Fig. 4 shows the AUC-ROC scores versus epoch for the
validation set (only the first 100 training epochs are shown
since there is only minor improvement after approximately 50
epochs). The black curve in each figure represents the baseline
model, i.e. model trained without transfer learning. In each
plot, all FallsNet models had higher starting AUC-ROC scores,
higher slopes, and obtained a higher AUC-ROC score than the
baseline FallsNet models with the exception when all ParNet
layers were transferred to FallsNet as denoted by ( ) in Fig. 4.

The best AUC-ROC scores obtained by FallsNet when
trained without transfer learning (baseline) were 82.9% (accel-
eration only) and 82.7% (acceleration and gyroscope). From
Table V, the best results from FallsNet were obtained by
transferring the first layer weights (l = 1) from ParNet(Waist,
Accel + Gyro). This model achieves an AUC-ROC score of
93.3%, which is a 10.6% increase in the AUC-ROC score over
the equivalent baseline model. With the decision threshold set
for equal error rate (EER), this model achieves 86.4% ACC,
85.1% sensitivity (SENS), and 87.1% specificity (SPEC).
From these results we observe that transfer learning provides
improvement in model performance.
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(d) ParNet(Waist, Accel + Gyro)

Fig. 4. AUC-ROC versus epoch for each ParNet model in Table II. In each
plot, the curves as denoted by ( ), ( ), ( ), ( ), ( ), ( ) correspond
to number of layers transferred l = 1, 2, 3, 4, 5, 6, respectively. Additionally,
( ) denotes the baseline FallsNet model trained without transfer learning.
All FallsNet models have higher starting AUC-ROC values, higher slopes, and
obtained higher AUC-ROC scores than the baseline FallsNet models, with the
exception of when all ParNet layers are transferred to FallsNet.

TABLE V
AUC-ROC SCORES (%) FOR PARNET MODELS IN TABLE II VERSUS

NUMBER OF LAYERS TRANSFERRED FROM PARNET TO FALLSNET. THE
OVERALL BEST FALLSNET MODEL WAS OBTAINED USING

PARNET(WAIST, ACCEL + GYRO) FOR l = 1.

Model Layers Transferred, l, to FallsNet
1 2 3 4 5 6

ParNet(All, Accel) 92.1 89.7 90.4 89.7 87.0 81.3
ParNet(All, Accel + Gyro) 92.1 91.7 91.5 90.1 87.9 71.9
ParNet(Waist, Accel) 91.3 91.2 92.1 88.8 89.7 79.2
ParNet(Waist, Accel + Gyro) 93.3 91.5 90.3 91.1 86.9 73.5

VI. FEATURE BASED FALLS RISK CLASSIFICATION

In this section, we compare the proposed DNN and transfer
learning approach for falls risk classification to standard ma-
chine learning approaches. Thus, we develop other falls risk
classifiers (logistic regression, random forest, and SVM) [39],
[43] trained on features identified from prior work.

A. Feature Extraction

In [9], the authors determined that features extracted from
the magnitude spectrum of acceleration measurements of gait
are the most discriminating for falls prediction. These are
features 11-13 and 19-33 from Table I in [44] and are extracted
according to [45]. The features include the fundamental fre-
quencies for the x-, y-, and z-axis; ratios of the area under
the first harmonic (fundamental, second, third, and fourth) to
the sum of the area under the first six harmonics; ratio of the
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sum of the area under the first six harmonics to the sum of
the remaining area under the spectrum; and ratio of the sum
of the area under the even harmonics to the sum of the area
under the odd harmonics.

B. Training and Evaluation

Using the features described above, we train a logistic
regression classifier [39], random forest classifier, and SVM
with a radial basis function kernel [43] for falls risk classi-
fication [39]. Each model was trained using a Monte Carlo
simulation for 100 iterations, where each iteration uses 80%
of the data for training and 20% for validation. During training,
we first optimize hyperparameters using Bayesian optimization
with 5-Fold cross validation [39]. We then re-train the model
using the best hyperparameters and determine the decision
threshold for an EER. For validation, we evaluate each model
using the AUC-ROC and the threshold found during training.

The ACC, SENS, and SPEC for all models are presented in
Table VI. These results are comparable to those in [18] where
the authors analyzed feature selection methods for predicting
prospective fall occurrence not falls risk which while similar,
is a more challenging task. Their best model with feature
selection achieved an ACC of 65% and SENS of 59%. Without
feature selection their best model achieved an ACC of 56% and
SENS of 42%. When compared to either FallsNet which uses
acceleration and gyroscope measurements and FallsNet which
uses acceleration measurements only, these classifiers perform
worse than our models in Section V-C. Although the work
in [9] did not find gyroscope measurements discriminating,
FallsNet appears to leverage this additional information in a
beneficial way.

VII. DISCUSSION

Based on the results in Table IV, we observe that training
with both accelerometer and gyroscope measurements yields
better low risk/high risk falls classification results than training
with accelerometer only measurements. By training with just
acceleration measurements, FallsNet is only capable of learn-
ing features related to gait dynamics [46], [47]. However, by
including rotation rate measurements, the network is capable
of learning additional features related to joint rotation [48].
Additionally, models trained on data from a single sensor
placed on the waist generalized better than models trained
on measurements from all sensor placement locations. This is
a direct result of the network only having to learn feature
representations for a single placement location, instead of
having to learn feature representations for various placement
locations. This is consistent with the results published in [31].

In terms of training and subsequent evaluation of FallsNet,
we find that ParNet(Waist, Accel + Gyro) has the best transfer
learning abilities, since the placement location of the HASC-
PAC2016 waist only data is in the proximity of the smartphone
placement location of the older adult gait data. We hypothesize
that due to similar sensor placements for both data sets near
the hip, we need only transfer the first layer of ParNet to
FallsNet and train subsequent layers with the older adult gait
data in order to achieve the highest AUC-ROC scores. Thus,

TABLE VI
COMPARISON OF FALLS RISK CLASSIFIERS USING THE OLDER ADULT GAIT
DATA. FALLSNET IS FOR THE BEST MODELS OBTAINED IN SECTION V-C.
SVM, LOGISTIC REGRESSION, AND RANDOM FORESTS WERE TRAINED

USING FEATURES DESCRIBED IN SECTION VI-A.

Model ACC (%) SENS (%) SPEC (%)
FallsNet (Accel + Gyro) 86.4 85.1 87.1
FallsNet (Accel) 82.6 83.0 82.4
Logistic Regression 58.1 56.6 59.0
Random Forests 63.8 43.9 74.8
SVM 59.6 53.9 62.8

layer 1 appears to sufficiently learn generalized features related
to human gait. FallsNet performance, as observed in Table V,
begins to degrade when the weights from deeper layers of Par-
Net, which are more task specific, are transferred to FallsNet.
These results are consistent with the findings in [49] which
analyzed transfer learning for activity recognition.

There are at least three limitations of this study. First, our
research is based solely on inertial measurements of gait.
However, there are many factors both intrinsic and extrinsic
which contribute to falls risk [3]. By incorporating additional,
non-gait based factors the real-world predictive accuracy of
our method maybe improved. Second, the older adult gait data
was collected in a laboratory like setting and with smartphones
carefully placed on a gait belt near the hip. Thus, greater
variability in the gait data under normal walking conditions
could be expected. Third, at this time we are unable to follow
up with study participants to determine whether or not they
had experienced a fall after data collection, however, our
work presents a methodology that can be applied to future
longitudinal studies of falls risk classification.

VIII. CONCLUSIONS

In this paper, we have proposed a method for classifying
older adults at either low or high falls risk using inertial
gait data acquired from a smartphone. First, we trained a
DNN composed of eight convolutional layers (including six
with dilated causal convolutions) and a convolutional softmax
output layer using the HASC-PAC2016 corpus. Using this net-
work (ParNet), we achieved an ACC of 98.8% for pedestrian
activity classification which is comparable to prior results.
Second, we modified ParNet to include a global average
pooling layer, fully connected layer, and a fully connected
softmax output layer to construct our falls risk classifier,
i.e. FallsNet. Third, we applied transfer learning due to the
limited number of examples in the older adult gait data. By
transferring the first layer of ParNet to FallsNet and retraining
the subsequent layers in FallsNet, we achieved an AUC-ROC
of 93.3% which is 10.6% higher than without transfer learn-
ing. When compared to standard machine learning methods
trained on features extracted from the magnitude spectrum of
acceleration, FallsNet has a higher ACC, SENS, and SPEC for
the falls risk classification task.
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