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ABSTRACT
In this paper, we calculate the computational
complexity for both fullband and subband
adaptive filter systems.  This calculation is
then used to determine the number of
subbands required to minimize computation
for given system parameters.  Furthermore,
certain features of the complexity function
are highlighted and a lower bound on the
computational reduction realized with
subband systems is given.

1.  INTRODUCTION
The computational requirements for the
adaptive adjustment of FIR filters with long
i m p u l s e  r e s p o n s e s  ( o n  t h e  o r d e r  o f
thousands  of  coef f ic ien ts )  present  a
formidable computation problem.  Even in
the case where the adjustment algorithm is
simple such as a Least Mean-Square (LMS)
a l g o r i t h m  w h i c h  r e q u i r e s  2N + 1
multiplications and 2N + 1 additions per
sample,  an adapt ive f i l ter  wi th  4000
coefficients operating at a 8kHz sample rate
would require over 128 million instruction
cycles per second (if one assumes a fused
multiply and accumulate (MAC) instruction
on the signal processor then the rate can
drop to 96 million if implemented properly).
Such parameters are typical in the acoustic
echo cancellation application illustrated in
Figure 1 as an adaptive system modeller.

O n e  t e c h n i q u e  t o  o v e r c o m e  t h e
computational problem is to replace the
single, fullband adaptive filter, ˆ h  w i t h
multiple, shorter-length subband adaptive
filters embedded in a filter bank structure as
shown in Figure 5.  In the subband adaptive
filter system, the desired output signal, y,
and the input signal, x are  spl i t  into M
subband  s igna l s  by  ana lys i s  f i l t e r s ,
f 0 , ,f M−1  and downsampled by a factor of

D.  A bank of adaptive filters, ˆ h 0 , , ˆ h M−1

each adjust themselves so as to minimize
their expected squared subband error which
is taken as the square of the difference
between the desired subband signal, ym and
the subband adaptive filter output, ˆ y m .  The
subband error signals are used to reconstruct
a fullband output [2].  Reconstruction of the
fu l lband  e r ro r  s igna l ,  e c o n s i s t s  o f
upsampling the subband error signals,
e0 , ,eM−1 by a factor of D and filtering with
synthesis filters, g0 , ,gM−1 .

The computational benefit of this technique
results from the fact that the subband
adaptive filters are shorter in length than the
fullband adaptive filter (although the total
number of FIR coefficients is usually the
same) and operate at a downsampled rate.
On the downside of this technique is the
increased design complexity, end-to-end
delay associated with analysis and synthesis
filtering, and aliasing associated with
downsampling.

2.  COMPUTATIONAL COMPLEXITY
OF THE SUBBAND ADAPTIVE

FILTER SYSTEM
The computational complexity of the M /  D
oversampled, M-subband adaptive filter
system (Figure 5), will be measured by the
number of real multiplications per input
sample.  In DSP applications such as FIR
filtering and FFTs, additions are usually
p e r f o r m e d  i n  c o n j u n c t i o n  w i t h
multiplications using a MAC instruction.
This instruction is vital  to many DSP
algorithms and counting the number of real
multiplications gives a good idea of the
number of multiply-accumulate instructions
and thus the computational complexity from
an implementation perspective.  We will



assume that x and y are real-valued signals.
The computational complexity for the
fullband adaptive filter with N coefficients is
then

Cfullband = 2N + 1. (1)

Next the computational complexity for the
subband adaptive filter system is derived in
two parts: the complexity for analysis and
synthesis  f i l ter ing,  Csubband,1  a n d  t h e
complexity for subband adaptive filtering
(M filters), Csubband,2 .  For the first part, we
assume analysis and synthesis filtering is
equivalently and efficiently implemented
with the polyphase uniform DFT filter bank
(see Figure 6), the prototype lowpass filter is
length L, and M / D  is an integer [3].  Then
Csubband,1   is computed as follows.  There are
a total of M polyphase filters, each of length
L/ D  operating at a downsampled rate of

1/ D  in the filter bank thus requiring LM
D2

real multiplications per input sample.  This
operation is performed three times: for the
analysis filtering of x a n d  y and for the
synthesis filtering of e0 , ,eM−1 .   The  M-
point DFT and IDFT are implemented
(assuming M is a power of 2) with a radix-2

F F T  w h i c h  r e q u i r e s  M
2 log2 M( ) − M

complex multiplications.  For real data, the

M-point IDFT can be realized with an M
2 -

p o i n t  F F T  a n d  M / 2  c o m p l e x
mul t ip l i ca t ions  [4 ] .   Th i s  r e la tes  to

M log2
M
2( )  real multiplications for the

analysis filtering of x a n d  y;  a  similar
realization holds for the synthesis filtering of
e0 , ,eM−1 .  Thus the total number of real
multiplications for subband filtering per
input sample is

Csubband,1 = 3LM
D2 + 3M log2

M
2( ) . (2)

Since the input and desired output signals
are real, the DFT is symmetric.  Exploiting

this symmetry requires processing of M
2 +1

o f  t h e  s u b b a n d s  w i t h  s u b b a n d s
M
2 +1, , M −1, taken as the respective

c o m p l e x  c o n j u g a t e s  o f  s u b b a n d s
M
2 −1, ,1.  Furthermore, the uniform DFT

bank will yield real signals in subbands 0
and M / 2  and complex signals in the other
subbands.  Thus there will be 2 real adaptive

filters and M
2 −1 complex adaptive filters.

Assuming the length of each subband
adaptive filter is N and operates at the
downsampled rate, and the LMS algorithm
(either real or complex) is used for the
u p d a t e ,  t h e  t o t a l  n u m b e r  o f  r e a l
multiplications for adaptive filtering per
input sample is

Csubband,2 =
2 2N +1( ) + 4 M

2 −1( ) 2N +1( )
D

=
2N +1( ) 2M − 2( )

D   . (3)

The complexity for the subband adaptive
filter system is then taken as the sum of (2)
and (3)

Csubband = Csubband,1 + Csubband, 2

=
3LM

D
2

+
2 N +1( ) 2M −2( )

D
+3Mlog

2

M

2

 
 
  

 
 . (4)

If the length of the unknown system, h to be

modeled is I, then the normalized (
Csubband

Cfullband
)

computational complexity with Cfullband taken
from (1) with N = I  and Csubband taken from
(4) with N = I / D  is

C subband

C fullband
=

3LM
D2 + 3M log2

M
2( ) +

2 I
D +1( ) 2M − 2( )

D
2I +1

=

3LM +4 I M −1( )
D2 + 2 M − 1( )

D + 3M log2
M
2( )

2 I+ 1
   . (5)



Figure  2  con ta ins  a  p lo t  o f  (5 )  wi th
I = 4000  and L = 64  versus the number of
subbands, M for critically sampled ( D = M )
and 2× oversampled ( D = M / 2 ) systems.
It is clear in this example, that for both
critically sampled and 2× oversampled
subband systems, there are configurations
that require fewer computations than the
equivalent fullband system.  Since most
systems wil l  have subbands sampled
between critical and 2× oversampled rates
(there do exist efficient polyphase, uniform-
DFT filter banks where M /  D is  not an
integer [5]), these curves represent rough
lower and upper bounds on normalized
computational complexity for the chosen
parameters.

3.  OPTIMAL NUMBER OF SUBBANDS
Given (4), the optimal (in the sense of
minimizing the computational complexity)
number of subbands, M may be computed.
However, since (4) is non-linear, a function
of four variables, and M is constrained to be
a power of 2 as is the case when using a
polyphase uniform DFT filter bank, closed
form solutions are difficult to arrive at.
Instead, we consider optimization of a
system with typical system parameters.  The
calculation for the optimal number of
subbands for other configurations is similar.
For the 2× oversampled system with L = 64
and I = 4000 , it can be proven that (4) has
one minimum and that the optimal number
of subbands (assuming M to be a power of
2) is 64.

The plot in Figure 3 illustrates the optimal
number of subbands, M (assuming M i s  a
power of 2) for a 2× oversampled subband
a d a p t i v e  f i l t e r  s y s t e m  (L = 64  a n d
N = I / D ) versus echo path length.  For
184 ≤ I ≤ 476 ,  16 subbands is  optimal,
477 ≤ I ≤ 2367, 32 subbands is optimal, and
f o r  2368 ≤ I ≤ 10961,  6 4  s u b b a n d s  i s
optimal.  For I < 184 , the subband system
(with above parameters) cannot be designed
to be more efficient than the fullband
system.

4.  MONOTONICITY OF THE
COMPUTATIONAL COMPLEXITY

FUNCTION
From Figure 2 it can be seen that for certain
subband adaptive filter system parameters
(M,  D,  L,  a n d  N), the subband system
requires less computation than its fullband
equivalent.  It will now be shown that as the
length of the echo path, I increases, the
normalized computational complexity of the
subband system monotonically decreases,
and thus the curves in Figure 2 will be lower
a s  I increases.  Differentiating (5) with
respect to I yields

∂ Csubband

Cfullband

 
 

 
 

∂I =
4

D 2 M −1( ) 1 − D( )[ ]− 6LM
D2 −6 M log 2

M
2( )

2I + 1( )2
. (6)

For D ≥ 1, (6) is strictly less than zero thus
Csubband

Cfullband
 monotonical ly decreases with

increasing echo path length.  Therefore
computa t ional  cos ts  assoc ia ted  wi th
implementing a subband adaptive filter
system versus the equivalent fullband
system decrease with increasing echo path
length.   The asymptot ic  value of  the
normalized computational complexity (5) is
computed using L’Hospital’s Rule as

lim
I→∞

Csubband

Cfullband

=
2

D2 M −1( ) . (7)

Figure 4 contains a plot of the normalized
computational complexity with L = 64  and
M = 64  versus the length of the echo path, I
for critically sampled and 2× oversampled
systems.  Included in this plot are the
asymptotic values for these systems.  It can
be seen that for a moderately long echo path
(~4000 coefficients), a 64-subband, 2×
oversampled  sys tem provides  a  75%
computational cost reduction over a similar
fullband implementation.



5.  CONCLUSIONS
In  this  paper ,  we have computed the
computational complexity (as measured by
the number of real multiplies) for a subband
adaptive filter system.  This calculation
demonstrates that there are configurations of
the subband system that are more efficient
than the equivalent fullband system.  For
typ ica l  sys tem paramete r s ,  we  have
computed the optimal number of subbands
to minimize the complexity.  We have also
presented the optimal number of subbands
for a typical system as a function of the echo
path length.  These optimums are easily
computed for other system parameters,
Finally, we have shown that as the echo path
increases, the subband system’s complexity
always decreases relative to the fullband
system.  The asymoptotic value (lower
bound) for the normalized computational
complexity was given.
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Figure 1: Fullband adaptive system modeller
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Figure 2: Normalized computational
complexity for the subband adaptive filter
system versus the number of subbands, M.
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Figure 3: Optimal number of subbands to
minimize subband computational

complexity as a function of echo path
length, I.
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Figure 5: The subband adaptive filter system.

Figure 6: Adaptive filter system with polyphase uniform DFT filter bank


