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Abstract—The use of Mel-frequency cepstral coefficients within a GMM framework. They did not extract any features
(MFCCs) is well established in the fields of speech processing,from the speech, but rather directly used the time-domain
particularly for speaker modeling within a Gaussian mixture speech frames as input to the GMM. Mouchtaris et al. [12] ap-

model (GMM) speaker recognition system. The use of GMMs for . .
speech enhancement applications has only recently been proposeoDlled MMSE spectral conversion methods to speech enhance-

in the literature; the concept of direct inversion of the MECCs, Mment, modeling speech and noise as jointly Gaussian within
however, has not been studied. In this paper we present a meansa GMM framework. The enhanced cepstral coefficients are
to invert MFCCs for use in speech enhancement applications. ysed within two linear filtering frameworks; i.e., the cepbt
E;ZLS;Sufgirn;eS::EaelpltE\gr:i?aqulstii\éal;a;ﬁgeﬂ thaﬁtly l(LESE?SCh feature vectors are not directly used to synthesize theneeich
" speech with either an iterative Kalman or iterative Wiener
filter. Deng et al. [13] developed closed form solutions Kwit
several assumptions and simplifications) for MMSE of cegbstr
The cepstral analysis of speech signals is homomorphic sfgature vectors from noisy speech. They use a GMM model
nal processing to separate convolutional aspects of thechpeof clean speech and use the enhanced cepstral featuresvector
production process [1]. The glottal pulse and formant $tméc in speech recognition rather than for speech enhancement.
of speech contains information important for charactegzi The subject of inversion of MFCCs for speech reconstruc-
individual speakers [2]-[4]; cepstral analysis allows ste tion has also recently been investigated, specifically iwith
components to be easily elucidated. As such, cepstral €oefffie framework of distributed speech recognition for speech
cients (CCs) are common features in speaker recognitioh (Slmmunication in mobile devices which proposes a restticte
research; in particular, Mel-frequency cepstral coeffitie set of MFCC-based speech features [14]. As such, Shao and
(MFCCs), with basis in human pitch perception, are perhapsilner [14] worked with MFCCs to reconstruct a smoothed
more common, e.g., [3]-[7]. Additionally, CCs, particljar log spectral envelope, and combined this with phase ant pitc
MFCCs, have shown promise in phonetic recognition applstimation within a sinusoidal speech synthesis system. No
cations, e.g., [8]-[10]; this lends credence to the hypsithe objective measures of speech quality were presented.
that enhanced MFCCs could be used to reconstruct/synghesizin this paper we consider the direct inversion of MFCCs for
clean speech from noise-corrupted speech. ultimate use in a GMM-based speech enhancement. Our focus
Simultaneously, Gaussian mixture models (GMMs) hava this paper is the inversion process, not the enhancement
been used now for over a decade in SR systems [3], [4]. Duedspects, nor any speech communication aspects. Our rfesearc
the non-deterministic aspect of speech (i.e., the actuatdo differs from previous work in that we look to use cepstralfeoe
produced for the same sound class will vary from instanéieients to directly reconstruct/synthesize the speectti@ell
to instance), it is desirable to model each sound class @®sents the theoretical basis for inversion of CCs and M&CC
a probability density function [4]. Since Gaussian mixtrewhile Section Ill discusses the perceptual artifacts uhieed
can model arbitrary distributions [3], they are well suitied by the inversion. Section IV presents considerations ferafs
modeling speech for SR systems, whereby each sound cl@&s/MFCCs in speech enhancement and Section V concludes.
° ?h()e:dilgs 2‘/ gggsﬁgluszlraglc\:ﬂol\:qEggggt-systems for speec !l INVERSION OFCEPSTRAL COEFFICIENTS
enhancement has only recently been investigated, howevehr\.Ne deal W.Ith a shprt-tlme I_:our!er transform (STFT) frame-
Kundu et al. [11] used a minimum mean-square estima\f\éork’ wherein the signat(n) is windowed
(MMSE) of clean speech frames given noisy speech frames Xk = Xk W Q)

I. INTRODUCTION



wherexy is the k-th frame of signalz(n), w is the length- C. Inversion Considerations for Modified STFTs

K window (often Hamming), and denotes an element-wise The modification of cepstral coefficients results in a mod-
multiplication. These frames may be stacked i a N matrix jfication of the STFTX. As such, the direct inversion of
X, where N is the total number of frames in signa(n). the DFT and OLA reconstruction is no longer valid. The
A. Cepstrum “closest” valid STFT X, in terms of least squared error
(LSE) can be obtained via the methods presented in [16].
The first method, inverse STFT (LSE-ISTFT), assumes that
C=DCT {10g [ DFT [fc]|2} (2) the STFT has been modified, but that some valid estimate of
. . . the phase exists; the second method, inverse STFT magnitude
where the discrete cosine transform (DCT) and d'scre(fSE-ISTFTM), operates on a modified STFT magnitude and

::ouner tr?rliforlm (IchFTf) are d applltid g)Ffl“_aCh dc%IuCr?niof iteratively develops an estimate of a valid STFT includimg a
n general, the iength of windowv, the » an MY astimate of phase. For the following experiments, we save
be different lengths, but we choose (without loss of geiglal o phase information of the STFT prior to the magnitude

the same lengtrk’ .for w and the DFT, aqd lengti/2 + 1 operation; thus the phase information can be used for th@ STF
for the DCT (considering only a symmetric half of the DFT)inversion process

The inversion of the cepstral coefficien@ is straight-
forward, since the DCT, DFT, log, and square operations aié¢l. A RTIFACTUAL EFFECTS OF THEINVERSION PROCESS

invertible.z(n) can be reconstructed frofnusing the overlap- |t js expected that the inversion of Mel-frequency cepstral
add (OLA) method [1]. The use of the magnitude of thgoefficients will introduce some distortion to the speegmal,
Fourier transform introduces a complication, howevercsingince the computation aK from E is an underconstrained
the phase information of(n) is discarded. This issue will be problem. We wish to quantify the perceptual quality arti§ac
considered in detail in Section II-C. that this inversion process may introduce. With the ultenat
B. Mel Cepstrum goal of leveraging the MFCCs in a speech enhancement

The computation of the Mel cepstrum applies a weightin enario, we are interested in the performance of the iiorers
to X — log|[DFT{X}| prior to the DCT operation. This rocess for a variety of signal-to-noise ratios (SNRs). Hie t

weighting is based on an model of human perception of pit(iﬁg’swe cortn.put1e7thef perceptual evatlua?og Qf spleech.quahty
and is most commonly implemented in the form of a filterban) Q) metric [17] of various reconstructed signals, usireg

: : : ' Implementation provided in [18].
of triangular filters [5]. For a given number of filtets, the
center frequencies of the first/2 filters are linearly spaced We use 10 randomly selected speakers from the TIMIT

from O to 1000 Hz, while the remaining are IogarithmicallfpeeCh corpus (5 male and 5 female) for evaluation. For each
spaced in the remainder of the bandwidth. The filters taper these speakers, we use 24 seconds of speech utterances.

200 at th prvius and subsequent cener frequencie, e PSSR e e = weovs S and e
the amplitudes are normalized to have unit energy. b y SI9 P :

The output of theJ Mel filters ¢; can be expressed in matrixthese experiments’ = 320, corrgspon¢ng 0 2.0 ms ?t the 16
form as kHz sample rate, and a Hamming window with 50% overlap

) is used. The PESQ mean opinion score (MOS) is computed
5 for the reconstructed signal.
where ® is J x K whosej-th row is ¢; and X is K x N. Figure 1 displays the MOS values for MFCC inverted
Thus the Mel cepstrum is computed as signals for three different reconstructions: (a) direatierting
112 S the STFT without an LSE method (i.e., assume tKais a
MC = DCT{(I)IOg IDFT ] } - DCT{@X}' “) valid STFT and using the original phase), (b) LSE-ISTFTM,
We choose (again without loss of generality) lengfthfor w and (c) LSE-ISTFT (using the original phase).

We define the cepstrum of signa(n) as

E = &X

and the DFT, and lengthi for the DCT. From Figure 1 (a), we note that the underconstrained nature
To invert the Mel weighting, we look fo®’ such that of the Mel cepstrum inversion introduces a degradation-of
X - PE—dPX ~ X ) 0.2 MOS points at high SNR for reasonably larfiebut these

artifacts become masked by the noise below about 30 dB SNR.
Defining ®' as the Moore-Penrose pseudoinvedse (1 = In Figure 1 (b), we show PESQ score for LSE estimations of
((I»T@)_l &7 for full rank ®), we assure thaX is the solution the STFT. The estimation of phase (LSE-ISTFTM) introduces
of minimal Euclidean norm [15]. The remaining operationsignificant perceptual degradatior (.2 MOS points) which
can be inverted without loss as in the straight cepstrum.istnot masked by the noise until very low levels of SNR §

is important to note, however, th& will not necessarily be dB). The LSE-ISTFT method using the original phase, on the
a valid STFT in the sense of having the required constrairgther hand, improves the PESQ MOS of MFCC inversion to
of a STFT [1], and the reconstruction af(n) via inverse almost the level attainable by the lossless inversion aigitt
DFT and OLA may contain artifacts; these artifacts are diyec CCs, and the artifacts become masked by the noise below
related to the underconstrained (generally K) nature of ~40 dB SNR. Thus, with the use of MFCC inversion and
the pseudoinvers®?. LSE-ISTFT with the noisy phase and within a reasonable
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(a) Effect of MFCC inversion using the original phase for thveerse

DFT, and assuming a valid STFX. Note the degradation of 0.2 Fig. 2. Relative importance of individual MFCCg, = 56. For these
MOS points at high levels of SNR for largé the artifacts become experiments, the-th cepstral coefficient for each frame is replaced by the
masked by the noise below about 30 dB SNR. mean of that coefficient across all speech frames in the sighake results

are averaged for the same 10 randomly chosen TIMIT speakeEsI&BFT
is used for reconstruction.

PESQ of TIMIT Speech in Additive White Gaussian Noise
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undesirable bias in the speaker model. However, many GMM-
as| N S N A based SR systems append the log energy to the cepstral,vector

e.g., [19], which would seem to provide opportunity for an
2 3 energy-based bias. Even in cepstral-based phoneme recog-

= nition systems [9], [10] and distributed speech recognitio

‘EL’J’ 250 . standards [14] the zeroth coefficient is often discarded.

For speech enhancement systems, where the speech will
2r Lo e mverson e LS | be reconstructed from the cepstral coefficients, the zeroth

- B- MFCC Inversion--No LSE coefficient is of utmost importance to the perceptual qualit

Lo o ECC nversion—LSEXSTRTM| As an illustration of this effect, we inverted MFCCs for afea
2\, Noisy Signal speech of the same 10 randomly chosen TIMIT speakers,
Hoo o 20 SﬁoR 60 80 100 while estimating the zeroth coefficient as the mean across

all the frames. Thus, for each frame of the input signal the
(b) Effect of LSE-ISTFT estimation and LSE-ISTFTM estimation o i i
The LSE-ISTFTM method introduces significant perceptualraieg- zeroth ceps_,tr_al coefficient is replaced with the mean of the
tion (~ 1.2 MOS points). LSE-ISTFT, however, increases the MOS to  S&me Coeﬁ'gen.t as ClompUte_d across all the speech frames-
nearly the score attainable with a straight cepstral ifwars/ = 56 Reconstruction is achieved via the LSE-ISTFT method. This
for the MFCC results here, anif/2 + 1 = 161 for the CC results. introduces a degradation of about 1.2 MOS points according
Fig. 1. Artifacts of the cepstral inversion process, in tehESQ mean t(_) F_)ESQ' as an be seen in Figure 2. While not shown here,
opinion score (MOS). These results are tallied for 10 rangiarhbsen TIMIT ~ similar conclusions hold for the use of the zeroth CC.
speakers (5 male and 5 female), and for additive white Gausmi@e at Itis important to note that we are not simply discarding the
different levels of signal-to-noise ratio (SNR). . . . . .
zeroth MFCC, but instead are replacing it with the optimal
estimate of its value (assuming that we have no observation

operating range of -10 to 40 dB SNR for speech enhancem8rf1 he frame-to-frame variation in the coefficient) [20]. d&v

applications, the artifacts due to the inversion of the M(¥Y.it _this reasonable_ esFimate of the coefficient value fier
cepstrum are negligible. significant degradation in PESQ MOS.

B. Relative Importance of Individual Coefficients
IV. USE OFCEPSTRALCOEFFICIENTS INSPEECH

ENHANCEMENT We can conduct similar tests replacing other single MFCCs

- with their mean prior to reconstruction. These results are

A. On the Use of the Zeroth Coefficient also plotted in Figure 2. We see a significant degradation in
In SR systems using cepstral coefficients as features PESQ MOS when we estimate any of the first severallQ)

a GMM-based modeling, the zeroth coefficient is generalMFCCs; less significant degradation occurs for coefficients

discarded [3]. In the straight cepstrum the zeroth coefficiein the approximate ranges of 20-30 and 50-56. This is not

is a measure of energy in the signal, which could lend amexpected given the direct correspondence of the initial



cepstral coefficients to formant structure. The source ef tleoefficients in a GMM-based speech enhancement framework,
smaller degradations are most likely due to the appearaiceparticularly the dimensionality limitations of the feaguset.
pitch period (i.e., vocal excitation) information in thengee of Continuing work is looking at the process of cepstral featur
60-400 Hz [1], or~3-17 ms. For a window of 20 ms as usecstimation for speech enhancement.

here, the first dip in PESQ performance is most likely due to
the 5 female speakers used in the experiment, while the decon
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speech are the first 10 coefficients which are directly rdlate
to the glottal pulse and formant structure of the speech [l{.
While not plotted here, similar conclusions hold for straigh 1
CCs as well. 2]
When viewed in light of a speech enhancement application,
it is clear that the first several MFCCs must be appropriate%]
estimated on a frame-by-frame basis if good quality spegch i
to be reconstructed. "
C. Considerations for GMM-based Speech Enhancement
Within the typical expectation maximization (EM) frame- [5]
work for computation of a GMM, the dimensionality of the
feature set is of utmost importance for the convergence of
the EM algorithm. The actual convergence is dependent dfl
many factors, including the dimensionality, the initialiion [7]
of the GMM, and the data itself, but it appears that the featur
dimensionality has the most effect. We have found that featu
dimensions much greater than 64 (with diagonal covarianc[@]
matrices) tend to cause divergence in the EM algorithm. Thus
for any GMM-based speech enhancement algorith, we are
restricted to the use of a feature set of 64 dimensions or ledd!
As MFCCs have demonstrated great use for characterization
of vocal tract configurations, and also provide a convenient
means to reduce the dimensionality of the STFT of a spee[éﬂ]
utterance, it is expected that MFCCs will have great promise
for GMM-based speech enhancement. [11]

D. Cepstral Feature Estimation for Speech Enhancement [12]

Within a speech enhancement framework, the goal is to
take MFCC feature vectors of noisy speech and estimate
the MFCCs of the underlying clean speech while seeking fg;
minimize the perceptual artifacts introduced by the ediiona
procedure. Since the inversion of MFCCs does not introduce
significant artifacts, the problem of speech enhancemetfit wjy4)
MFCCs becomes solely a problem of estimation.

V. CONCLUSIONS (15]

In this paper we have discussed the inversion of MelL6]
frequency cepstral coefficients. Perceptual artifacts thue
this inversion were quantified through the use of the PES§g
objective speech quality metric. We have demonstrated that
the perceptual artifacts of the MFCC inversion process are
negligible in the range of SNR for typical speech enhanceémen
applications. We have also discussed the relative impcetaril8]
of the various individual cepstral coefficients as quarditis (19]
PESQ. This has implications for the proper frame-by-frame
estimation of cepstrum for reconstruction of enhanced®peel20]
We have also considered the implications of using cepstral
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