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Abstract—The use of Mel-frequency cepstral coefficients
(MFCCs) is well established in the fields of speech processing,
particularly for speaker modeling within a Gaussian mixture
model (GMM) speaker recognition system. The use of GMMs for
speech enhancement applications has only recently been proposed
in the literature; the concept of direct inversion of the MFCCs,
however, has not been studied. In this paper we present a means
to invert MFCCs for use in speech enhancement applications.
Results for cepstral inversion is evaluated on the TIMIT speech
corpus using perceptual evaluation of speech quality (PESQ).

I. I NTRODUCTION

The cepstral analysis of speech signals is homomorphic sig-
nal processing to separate convolutional aspects of the speech
production process [1]. The glottal pulse and formant structure
of speech contains information important for characterizing
individual speakers [2]–[4]; cepstral analysis allows these
components to be easily elucidated. As such, cepstral coeffi-
cients (CCs) are common features in speaker recognition (SR)
research; in particular, Mel-frequency cepstral coefficients
(MFCCs), with basis in human pitch perception, are perhaps
more common, e.g., [3]–[7]. Additionally, CCs, particularly
MFCCs, have shown promise in phonetic recognition appli-
cations, e.g., [8]–[10]; this lends credence to the hypothesis
that enhanced MFCCs could be used to reconstruct/synthesize
clean speech from noise-corrupted speech.

Simultaneously, Gaussian mixture models (GMMs) have
been used now for over a decade in SR systems [3], [4]. Due to
the non-deterministic aspect of speech (i.e., the actual sound
produced for the same sound class will vary from instance
to instance), it is desirable to model each sound class as
a probability density function [4]. Since Gaussian mixtures
can model arbitrary distributions [3], they are well suitedto
modeling speech for SR systems, whereby each sound class
is modeled by one Gaussian component.

The use of cepstral- or GMM-based systems for speech
enhancement has only recently been investigated, however.
Kundu et al. [11] used a minimum mean-square estimate
(MMSE) of clean speech frames given noisy speech frames

within a GMM framework. They did not extract any features
from the speech, but rather directly used the time-domain
speech frames as input to the GMM. Mouchtaris et al. [12] ap-
plied MMSE spectral conversion methods to speech enhance-
ment, modeling speech and noise as jointly Gaussian within
a GMM framework. The enhanced cepstral coefficients are
used within two linear filtering frameworks; i.e., the cepstral
feature vectors are not directly used to synthesize the enhanced
speech with either an iterative Kalman or iterative Wiener
filter. Deng et al. [13] developed closed form solutions (with
several assumptions and simplifications) for MMSE of cepstral
feature vectors from noisy speech. They use a GMM model
of clean speech and use the enhanced cepstral feature vectors
in speech recognition rather than for speech enhancement.

The subject of inversion of MFCCs for speech reconstruc-
tion has also recently been investigated, specifically within
the framework of distributed speech recognition for speech
communication in mobile devices which proposes a restricted
set of MFCC-based speech features [14]. As such, Shao and
Milner [14] worked with MFCCs to reconstruct a smoothed
log spectral envelope, and combined this with phase and pitch
estimation within a sinusoidal speech synthesis system. No
objective measures of speech quality were presented.

In this paper we consider the direct inversion of MFCCs for
ultimate use in a GMM-based speech enhancement. Our focus
in this paper is the inversion process, not the enhancement
aspects, nor any speech communication aspects. Our research
differs from previous work in that we look to use cepstral coef-
ficients to directly reconstruct/synthesize the speech. Section II
presents the theoretical basis for inversion of CCs and MFCCs,
while Section III discusses the perceptual artifacts introduced
by the inversion. Section IV presents considerations for use of
CCs/MFCCs in speech enhancement and Section V concludes.

II. I NVERSION OFCEPSTRALCOEFFICIENTS

We deal with a short-time Fourier transform (STFT) frame-
work, wherein the signalx(n) is windowed

x̃k = xk · w (1)



wherexk is the k-th frame of signalx(n), w is the length-
K window (often Hamming), and· denotes an element-wise
multiplication. These frames may be stacked in aK×N matrix
x̃, whereN is the total number of frames in signalx(n).

A. Cepstrum

We define the cepstrum of signalx(n) as

C = DCT
{

log |DFT [x̃]|
2

}

(2)

where the discrete cosine transform (DCT) and discrete
Fourier transform (DFT) are applied to each column ofx̃.
In general, the length of windoww, the DFT, and DCT may
be different lengths, but we choose (without loss of generality)
the same lengthK for w and the DFT, and lengthK/2 + 1
for the DCT (considering only a symmetric half of the DFT).

The inversion of the cepstral coefficientsC is straight-
forward, since the DCT, DFT, log, and square operations are
invertible.x(n) can be reconstructed from̃x using the overlap-
add (OLA) method [1]. The use of the magnitude of the
Fourier transform introduces a complication, however, since
the phase information ofx(n) is discarded. This issue will be
considered in detail in Section II-C.

B. Mel Cepstrum

The computation of the Mel cepstrum applies a weighting
to X̃ = log |DFT {x̃}|

2 prior to the DCT operation. This
weighting is based on an model of human perception of pitch
and is most commonly implemented in the form of a filterbank
of triangular filters [5]. For a given number of filtersJ , the
center frequencies of the firstJ/2 filters are linearly spaced
from 0 to 1000 Hz, while the remaining are logarithmically
spaced in the remainder of the bandwidth. The filters taper to
zero at the previous and subsequent center frequencies, and
the amplitudes are normalized to have unit energy.

The output of theJ Mel filtersφj can be expressed in matrix
form as

E = ΦX̃ (3)

whereΦ is J × K whosej-th row is φj and X̃ is K × N .
Thus the Mel cepstrum is computed as

MC = DCT
{

Φ log |DFT [x̃]|
2

}

= DCT
{

ΦX̃

}

. (4)

We choose (again without loss of generality) lengthK for w

and the DFT, and lengthJ for the DCT.
To invert the Mel weighting, we look forΦ′ such that

X̂ = Φ
′
E = Φ

′
ΦX̃ ≈ X̃ (5)

Defining Φ
′ as the Moore-Penrose pseudoinverseΦ

† (Φ† =
(

Φ
T
Φ

)−1

Φ
T for full rank Φ), we assure that̂X is the solution

of minimal Euclidean norm [15]. The remaining operations
can be inverted without loss as in the straight cepstrum. It
is important to note, however, that̂X will not necessarily be
a valid STFT in the sense of having the required constraints
of a STFT [1], and the reconstruction ofx(n) via inverse
DFT and OLA may contain artifacts; these artifacts are directly
related to the underconstrained (generallyJ < K) nature of
the pseudoinverseΦ†.

C. Inversion Considerations for Modified STFTs

The modification of cepstral coefficients results in a mod-
ification of the STFTX̃. As such, the direct inversion of
the DFT and OLA reconstruction is no longer valid. The
“closest” valid STFT X̃e, in terms of least squared error
(LSE) can be obtained via the methods presented in [16].
The first method, inverse STFT (LSE-ISTFT), assumes that
the STFT has been modified, but that some valid estimate of
the phase exists; the second method, inverse STFT magnitude
(LSE-ISTFTM), operates on a modified STFT magnitude and
iteratively develops an estimate of a valid STFT including an
estimate of phase. For the following experiments, we save
the phase information of the STFT prior to the magnitude
operation; thus the phase information can be used for the STFT
inversion process.

III. A RTIFACTUAL EFFECTS OF THEINVERSION PROCESS

It is expected that the inversion of Mel-frequency cepstral
coefficients will introduce some distortion to the speech signal,
since the computation of̃X from E is an underconstrained
problem. We wish to quantify the perceptual quality artifacts
that this inversion process may introduce. With the ultimate
goal of leveraging the MFCCs in a speech enhancement
scenario, we are interested in the performance of the inversion
process for a variety of signal-to-noise ratios (SNRs). To this
end, we compute the perceptual evaluation of speech quality
(PESQ) metric [17] of various reconstructed signals, usingthe
implementation provided in [18].

We use 10 randomly selected speakers from the TIMIT
speech corpus (5 male and 5 female) for evaluation. For each
of these speakers, we use 24 seconds of speech utterances.
White Gaussian noise is added at various SNRs and the
cepstrum of the noisy signal is computed and inverted. For
these experimentsK = 320, corresponding to 20 ms at the 16
kHz sample rate, and a Hamming window with 50% overlap
is used. The PESQ mean opinion score (MOS) is computed
for the reconstructed signal.

Figure 1 displays the MOS values for MFCC inverted
signals for three different reconstructions: (a) directlyinverting
the STFT without an LSE method (i.e., assume thatX̂ is a
valid STFT and using the original phase), (b) LSE-ISTFTM,
and (c) LSE-ISTFT (using the original phase).

From Figure 1 (a), we note that the underconstrained nature
of the Mel cepstrum inversion introduces a degradation of∼
0.2 MOS points at high SNR for reasonably largeJ , but these
artifacts become masked by the noise below about 30 dB SNR.

In Figure 1 (b), we show PESQ score for LSE estimations of
the STFT. The estimation of phase (LSE-ISTFTM) introduces
significant perceptual degradation (∼ 1.2 MOS points) which
is not masked by the noise until very low levels of SNR (∼ 5
dB). The LSE-ISTFT method using the original phase, on the
other hand, improves the PESQ MOS of MFCC inversion to
almost the level attainable by the lossless inversion of straight
CCs, and the artifacts become masked by the noise below
∼40 dB SNR. Thus, with the use of MFCC inversion and
LSE-ISTFT with the noisy phase and within a reasonable
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(a) Effect of MFCC inversion using the original phase for theinverse
DFT, and assuming a valid STFT̂X. Note the degradation of∼ 0.2
MOS points at high levels of SNR for largeJ ; the artifacts become
masked by the noise below about 30 dB SNR.
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(b) Effect of LSE-ISTFT estimation and LSE-ISTFTM estimation.
The LSE-ISTFTM method introduces significant perceptual degrada-
tion (∼ 1.2 MOS points). LSE-ISTFT, however, increases the MOS to
nearly the score attainable with a straight cepstral inversion. J = 56

for the MFCC results here, andK/2 + 1 = 161 for the CC results.

Fig. 1. Artifacts of the cepstral inversion process, in termsof PESQ mean
opinion score (MOS). These results are tallied for 10 randomly chosen TIMIT
speakers (5 male and 5 female), and for additive white Gaussiannoise at
different levels of signal-to-noise ratio (SNR).

operating range of -10 to 40 dB SNR for speech enhancement
applications, the artifacts due to the inversion of the Mel
cepstrum are negligible.

IV. U SE OFCEPSTRALCOEFFICIENTS INSPEECH

ENHANCEMENT

A. On the Use of the Zeroth Coefficient

In SR systems using cepstral coefficients as features for
a GMM-based modeling, the zeroth coefficient is generally
discarded [3]. In the straight cepstrum the zeroth coefficient
is a measure of energy in the signal, which could lend an
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Fig. 2. Relative importance of individual MFCCs,J = 56. For these
experiments, thek-th cepstral coefficient for each frame is replaced by the
mean of that coefficient across all speech frames in the signal.These results
are averaged for the same 10 randomly chosen TIMIT speakers. LSE-ISTFT
is used for reconstruction.

undesirable bias in the speaker model. However, many GMM-
based SR systems append the log energy to the cepstral vector,
e.g., [19], which would seem to provide opportunity for an
energy-based bias. Even in cepstral-based phoneme recog-
nition systems [9], [10] and distributed speech recognition
standards [14] the zeroth coefficient is often discarded.

For speech enhancement systems, where the speech will
be reconstructed from the cepstral coefficients, the zeroth
coefficient is of utmost importance to the perceptual quality.
As an illustration of this effect, we inverted MFCCs for clean
speech of the same 10 randomly chosen TIMIT speakers,
while estimating the zeroth coefficient as the mean across
all the frames. Thus, for each frame of the input signal the
zeroth cepstral coefficient is replaced with the mean of the
same coefficient as computed across all the speech frames.
Reconstruction is achieved via the LSE-ISTFT method. This
introduces a degradation of about 1.2 MOS points according
to PESQ, as can be seen in Figure 2. While not shown here,
similar conclusions hold for the use of the zeroth CC.

It is important to note that we are not simply discarding the
zeroth MFCC, but instead are replacing it with the optimal
estimate of its value (assuming that we have no observation
of the frame-to-frame variation in the coefficient) [20]. Even
with this reasonable estimate of the coefficient value, there is
significant degradation in PESQ MOS.

B. Relative Importance of Individual Coefficients

We can conduct similar tests replacing other single MFCCs
with their mean prior to reconstruction. These results are
also plotted in Figure 2. We see a significant degradation in
PESQ MOS when we estimate any of the first several (∼ 10)
MFCCs; less significant degradation occurs for coefficients
in the approximate ranges of 20-30 and 50-56. This is not
unexpected given the direct correspondence of the initial



cepstral coefficients to formant structure. The source of the
smaller degradations are most likely due to the appearance of
pitch period (i.e., vocal excitation) information in the range of
60-400 Hz [1], or∼3-17 ms. For a window of 20 ms as used
here, the first dip in PESQ performance is most likely due to
the 5 female speakers used in the experiment, while the second
dip is due to the male speakers. Overall, it appears the the most
important MFCCs for perceptual quality of the reconstructed
speech are the first 10 coefficients which are directly related
to the glottal pulse and formant structure of the speech [1].
While not plotted here, similar conclusions hold for straight
CCs as well.

When viewed in light of a speech enhancement application,
it is clear that the first several MFCCs must be appropriately
estimated on a frame-by-frame basis if good quality speech is
to be reconstructed.

C. Considerations for GMM-based Speech Enhancement

Within the typical expectation maximization (EM) frame-
work for computation of a GMM, the dimensionality of the
feature set is of utmost importance for the convergence of
the EM algorithm. The actual convergence is dependent on
many factors, including the dimensionality, the initialization
of the GMM, and the data itself, but it appears that the feature
dimensionality has the most effect. We have found that feature
dimensions much greater than 64 (with diagonal covariance
matrices) tend to cause divergence in the EM algorithm. Thus,
for any GMM-based speech enhancement algorith, we are
restricted to the use of a feature set of 64 dimensions or less.

As MFCCs have demonstrated great use for characterization
of vocal tract configurations, and also provide a convenient
means to reduce the dimensionality of the STFT of a speech
utterance, it is expected that MFCCs will have great promise
for GMM-based speech enhancement.

D. Cepstral Feature Estimation for Speech Enhancement

Within a speech enhancement framework, the goal is to
take MFCC feature vectors of noisy speech and estimate
the MFCCs of the underlying clean speech while seeking to
minimize the perceptual artifacts introduced by the estimation
procedure. Since the inversion of MFCCs does not introduce
significant artifacts, the problem of speech enhancement with
MFCCs becomes solely a problem of estimation.

V. CONCLUSIONS

In this paper we have discussed the inversion of Mel-
frequency cepstral coefficients. Perceptual artifacts dueto
this inversion were quantified through the use of the PESQ
objective speech quality metric. We have demonstrated that
the perceptual artifacts of the MFCC inversion process are
negligible in the range of SNR for typical speech enhancement
applications. We have also discussed the relative importance
of the various individual cepstral coefficients as quantified by
PESQ. This has implications for the proper frame-by-frame
estimation of cepstrum for reconstruction of enhanced speech.
We have also considered the implications of using cepstral

coefficients in a GMM-based speech enhancement framework,
particularly the dimensionality limitations of the feature set.
Continuing work is looking at the process of cepstral feature
estimation for speech enhancement.
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