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ABSTRACT

Recent work into the separation of mixtures of speech sig-
nals has shown some success. One particular method is
based on the assumption that scalar mixtures of speech sig-
nals have a kurtosis less than that for either source. Under
this assumption, a simple gradient search algorithm is em-
ployed to maximize kurtosis thereby separating the source
speech signals from the mixture. While this assumption
has been observed to be generally true for long speech seg-
ments, it is quite reasonable to expect the assumption not to
hold over short segments (windows) of speech. In this case,
kurtosis maximization is not the appropriate strategy and
the algorithm will fail to separate the signals. In this paper,
we examine the kurtosis of speech signals over short seg-
ments of speech, i.e. short-time kurtosis. The analysis will
indicate in general, how successful a kurtosis maximization
strategy can be in separating speech signals from a mixture.

1. INTRODUCTION

In many audio-interface, forensic, multimedia, and speech
recognition applications, mixtures of speech signals from
various speakers must be separated out before processing.
Given the complicated nature of speech signals this is a dif-
ficult problem compounded by environmental effects such
as noise, echo, and reverberation and a strong desire for a
simple algorithm suitable for real-time operation [2]. Sev-
eral methods have been proposed some of which have shown
moderate success but often at the expense of high computa-
tional complexity [6],[8].

The basic problem is illustrated in Figure 1. As a first
step, we assume two unknown speech source signals, s1 and
s2 are mixed in a scalar fashion (as opposed to the more re-
alistic convolutional mixture which is also more difficult to
separate) to produce two mixture signals x1 and x2. Thus
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given x1 and x2 and no further information, we wish to pro-
duce y1 and y2 which approximate s1 and s2. Such a prob-
lem formulation is referred as the “blind source separation”
problem. The problem is illustrated in a more convenient
form in Figure 2 where A is the mixing matrix whose ele-
ments are real numbers (scalars) and WT is the separation
matrix we must determine. In this case we have

x = As (1)

where

s =
[

s1 s2

]T

x =
[

x1 x2

]T
(2)

Clearly, choosing WT = A−1 would separate the signals
(assuming A is invertible) but A is not known.
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Figure 1: Speech signal separation problem
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Figure 2: Basic signal separation setting

2. SPEECH SIGNAL SEPARATION

We begin by defining the kurtosis of a zero mean random
variable, x as

κx =
E

[

x4
]

{E [x2]}2
. (3)

Previous work observed that long-term mixtures of speech
signals generally have a kurtosis lower than the kurtosis of
the individual speech signals, i.e.

κx1 < min{κs1 , κs2}
κx2 < min{κs1 , κs2}, (4)

[3]. In addition, spherically-invariant random processes which
have been used as statistical models for speech exhibit sim-
ilar characteristics [1], [3]. In other types of source sepa-
ration problems (not necessarily speech), conditions on the
signal kurtosis have often been employed in algorithm de-
sign [5]. In the speech separation problem, we formulate a
kurtosis maximization algorithm to adaptively compute the
separation matrix WT under the (critical) assumption that
(4) holds. The steepest ascent (used in maximization) algo-
rithm is given by

W(n + 1) = W(n) + µ !W(κy) (5)

where µ is the step size and !W(κy) is the gradient of the
kurtosis of the output signals,

y =
[

y1 y2

]T
. (6)

Computing the gradient yields the update algorithm for speech
separation through kurtosis maximization

W(n + 1) = W(n) + µ·
[

−α1β1γ1w21 −α2β2γ2w22

α1β1γ1w11 α2β2γ2w12

]

(7)

where

αi = 4 [w1i(n)x1(n) + w2i(n)x2(n)]3 , (8)

βi = −x1(n)w1i(n)r12 − x1(n)w2i(n)σ2
2+

x2(n)w1i(n)σ2
1 + x2(n)w2i(n)r12, (9)

γi =
[

w2
i1(n)σ2

1+

2wi1(n)w2i(n)r12 + w2
2i(n)σ2

2

]−3
, (10)

W(n) =
[

w11(n) w12(n)
w21(n) w22(n)

]

, (11)

and σ2
i = E

[

x2
i

]

and r12 = E [x1x2]. Simple autoregres-
sive estimators are used for σ2

i and r12,

σ̂2
i (n) = λσ̂2

i (n − 1) + (1 − λ) xi(n)2

r̂12(n) = λr̂12(n − 1) + (1 − λ) x1(n)x2(n) (12)

since these statistics are not known a priori.
Results for the algorithm given in (7) indicated that at

least one if not both speech signals could be separated from
the mixture with separation ratios on the order of 40-50dB
[4]. (It is assumed that if at least one speech signal can be
separated from the mixture, residual processing can sepa-
rate out the remaining signal.) It was also noted that during
adaptation, separation ratios at times also decreased due to
short-time failure of the critical assumption in (4) (kurtosis
of the mixed speech signals is less than that for the source
signals). The decrease in separation ratios during these fail-
ures was at times as much as pre-adaptation levels thus in-
dicating no real separation of the mixed speech signals.

3. SHORT-TIME KURTOSIS OF SPEECH SIGNALS

In order to evaluate the susceptibility of the speech separa-
tion algorithm to failures in the critical assumption, we ex-
amine the kurtosis of speech source signals and scalar mix-
tures of speech signals over short-time windows. We first
measure the kurtosis of each source speech signal over win-
dows of 0.1, 0.25, and 0.5s in duration (no window overlap).
Next we measure kurtosis of scalar mixtures of the speech
signals [x1 = αs1 + (1−α)s2] over the same windows for
the various mixing parameters α = 0.1, 0.2, . . . , 0.9. For
each window, we determine whether the critical assumption
in (4) is satisfied for one or both source signals. The pro-
portion of signals which satisfy the critical assumption then
lead to statistics on algorithm failure.

In order to control the evaluation of short-time kurtosis
of speech signals, we use speech signals from 100 speak-
ers in the standard TIMIT speech corpus [7]. The duration
of the speech signals is on the order of 10s. Figures 3-5
illustrate the results. We see from each of the figures that
the critical assumption is generally satisfied (>90%) by at
least one of the mixture signals over segments as small as
0.1s for a wide range of mixing ratios. We note that at ex-
treme mixing ratios of α = 0.1 and α = 0.9 the signals are
approximately separated to begin with and thus short-time
failures in these cases are not as critical.
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Figure 3: Probability of satisfying kurtosis condition over
0.1s window
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Figure 4: Probability of satisfying kurtosis condition over
0.25s window

4. CONCLUSION

In this paper we have examined the kurtosis of short seg-
ments of speech. The results indicate that a speech sep-
aration strategy based on maximizing kurtosis of the out-
put signals will generally be effective. Our results indicate
that over durations of 0.1, 0.25, and 0.5s, the mixture sig-
nal will have a kurtosis less than that of both source signals
about 50% of the time and less than that either source sig-
nals about 90% of the time. The latter result indicates that
nearly all the time at least one speech signal can be sepa-
rated; residual processing may then be used to separate the
remaining speech signal.
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Figure 5: Probability of satisfying kurtosis condition over
0.5s window
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