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Abstract—In speaker verification (SV) systems based on
Gaussian Mixture Model-Universal Background Model (GMM-
UBM), normalization is an important component in the decision
stage. Many normalization methods including the T- and Z-
norms, have been proposed and investigated and these have
contributed to state-of-the-art SV systems which have extremely
low equal-error rates (EERs). In this paper, we consider appli-
cation of both T- and Z-norms to a carefully selected subset of
speakers using a data driven approach which can significantly
reduce computation resulting in faster SV decisions and lower
EER. Unfortunately, selection of the subset is critical and must
be representative of the entire speaker model space otherwise
error rates will increase. In order to properly select the subset
of speakers for the normalizations, we propose a novel method
which first clusters the speaker models using the K-means
algorithm and the Kullback-Leibler (KL) divergence and then
selects a set of speakers within the cluster. We evaluate the
approach using both the TIMIT, NTIMIT and NIST-2002 corpora
and compare against standard T- and Z-normalizations.

Index Terms – Speaker recognition, Clustering methods

I. INTRODUCTION

The objective of speaker verification (SV) is to verify an
identity claim of a voice sample [1]. SV is a two-stage pro-
cedure consisting of training and testing. In the training stage,
speaker-dependent feature vectors are extracted from the train-
ing speech signals and a speaker model λs is built by MAP-
adapting the training feature vectors to a Gaussian mixture
model-universal background model (GMM-UBM) [2]. Normally,
SV systems use mel-frequency cepstral coefficients (MFCCs)
as a L × 1 feature vector and the speaker model λs is param-
eterized by the set {wi, μi,Σi} where wi are the weights, μi

are the mean vectors, and Σi are the covariance matrices. In
the testing stage, feature vectors Xtest

m are extracted from a test
signal. A log-likelihood ratio Λ(Xtest

m ) is computed by scoring the
test feature vectors against the claimant model and the UBM.

Λ(Xtest
m ) = log p(Xtest

m |λs) − log p(Xtest
m |λUBM). (1)

The claimant speaker is accepted if

Λ(Xtest
m ) ≥ θ (2)

or else rejected [3].
The log-likelihood ratio given in (1) essentially measures how

well the claimant’s model scores compared to a background
model for a given test utterance [4]. Prior to the use of GMM-
UBM techniques for SV systems, the second term on the right

hand side of (1) is replaced by a function, such as average or
maximum, operating on a set of speaker models other than the
claimant model [2]. The set of other speaker models is called as
cohort set and should be selected in such a way that it covers
the expected impostors encountered during testing.

The important problem in SV is to find a decision threshold
θ for the decision making [5], [6]. The uncertainty in θ is mainly
due to score variability between the trials. Score variability is
due to the nature of enrollment material: phonetic content,
signal duration, environmental noise, intraspeaker variability,
transmission channel and quality of the speaker model train-
ing [3]. In the literature, the following three ways have been used
to deal with the score variability: client-specific threshold, client-
specific fusion and client-specific score normalization [7]. In
client-specific threshold, each user has a different threshold [8],
which can be a function of a global threshold [9]. However, the
decision threshold has to be tuned for each user separately
making it difficult for large population applications.

In the literature, several client-specific fusion classifiers have
been proposed [7], [6], [10]. In [6], a support vector machine
(SVM) classifier was used which shares the user-specific and
user-independent data. The SVM was trained using user-
specific data scores and user-independent scores. The relative
influence of both the scores are weighted by controlling the
contribution of each set of scores in the SVM. In [7], a two
level client-specific fusion strategy was developed. In the first
stage, N base systems have to be developed for J users and
thus J × N scores have to be trained. In the second stage,
N normalized outputs are formed by using a global fusion
classifier, which is common to all the users.

In client-specific score normalization, normalization parame-
ters are estimated for each speaker and applied after (1) is cal-
culated, such that only a global threshold is needed. A general
block diagram of the SV system using score normalization is
shown in Fig. 1. Several score normalization techniques have
been proposed in the literature, such as Z-norm, H-norm, T-
norm, HT-norm, C-norm, F-norm, and D-norm. The need for
score normalization was first studied in [11].

In [11], researchers observed large variance from both dis-
tributions of claimant scores and impostor scores during SV
tests. To reduce the overall score distribution variance, the au-
thors in [11] proposed impostor score distribution normalization.
The basic idea is to center the impostor score distribution by
applying on each score generated by SV system the following
normalization
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Fig. 1. Overview of speaker verification system using score normal-
ization.

Λ̃(X) =
Λ(X) − μλ

σλ
(3)

where μλ and σλ are normalization parameters for speaker
λ and Λ̃(X) is the distribution of the normalized scores. The
parameters μλ and σλ need to be estimated. Among the various
normalization techniques Z-norm and T-norm are most widely
used.

In Zeros normalization (Z-norm), a speaker model is tested
against a set of example impostor utterances, resulting in an
impostor similarity score distribution. Speaker dependent mean
and variance are estimated from this distribution and are used
in (3). The advantage of Z-norm is that the estimation of
normalization parameters can be performed during the training
stage of the system resulting in no additional testing stage
computation [5].

In Test normalization (T-norm), during testing a set of im-
postor models are scored against the test utterance to yield
an impostor score distribution. The advantage of T-norm over
a cohort normalization is the use of the variance parameter
which approximates the distribution of cohort population more
accurately. The advantage of T-norm over Z-norm is that any
acoustical mismatch between test utterance and impostor ut-
terances are avoided. The disadvantage of T-norm is that it is
performed during the testing stage resulting in an additional
testing stage computation [5].

It is observed that, most of the client speaker models respond
differently, for telephone speech, when the handset type used
during training is different from that of testing. To deal with
the handset mismatch between training and testing, H-norm, a
variant of Z-norm, was proposed in [12]. Here, each speaker
model is tested against different handset dependent speech
signals produced by impostors to estimate the mean and
variance of the handset dependent normalization parameters.
The knowledge of the handset type used for the incoming test
utterance determines the right set of the parameters to be used
in score normalization.

As opposed to Z-norm, D-norm does not require any speech
data to estimate the normalization parameters [13]. Here,
pseudo-impostor data is generated using the UBM. A Monte-
Carlo based symmetric Kullback-Leibler (KL) distance is used
to obtain a set of client and impostor data using client model
and UBM respectively. However, results presented in [13] show
that Z-norm always outperformed D-norm, particularly at low
miss-detection rates.

C-norm was introduced in [14] to deal with the cellular data
when speech was recorded using several unidentified handsets.
Here, the data required to estimate the normalization parame-
ters is clustered followed by a H-norm like process, assuming

each cluster consists of data generated from different handset
types. However, authors claim that there is no performance gain
when compared to T-norm and is more expensive to implement.
HT-norm is based on same observation as H-norm but a variant
of T-norm.

From the brief literature survey one can understand that
Z-norm and T-norm are the most widely used normalization
techniques and there exist many variants of these, specific to
the database or application. Two important questions are 1)
What is the proper amount of impostor utterances required to
estimate Z-norm parameters and 2) How many cohort models
are required for T-norm? Researchers in [15], [16] propose two
different ways of selecting the cohort models for T-norm.

In [15], speaker adaptive cohort selection was proposed
based on a city-block distance. Here, each speaker model is
scored against N -impostor utterances to get a N -dimensional
vector. Also, a pool of P T-norm models are scored against
N -impostor utterances to get a P × N matrix. Using city-block
vector distance measure, K-nearest T-norm models are chosen
from the set of P models. This method was called AT-norm. The
experiments were conducted on NIST-2004 corpus consisting
of 435 male speakers and 550 female speakers, with K = 55.
Results show AT-norm outperformed T-norm.

The procedure in [16] is much similar to AT-norm but in-
stead of using city-block distance, here researchers used an
approximation of KL divergence and called it KL-T-norm. The
KL divergence between each speaker model and P T-norm
models is computed and K nearest models are chosen. Exper-
iments were performed on NIST-2005 corpus and KL-T-norm
outperformed T-norm, with a cohort size of 75. However, no
comparisons were made to AT-norm.

In this paper, the focus is on selecting the impostor utterances
for estimating the Z-norm parameters and selecting the cohort
models for T-norm We propose the use of training stage speaker
model clustering (SMC) to guide us in selecting the impostor
utterances and T-norm models. We are unaware of any paper
dealing with selection of impostor utterances for Z-norm and
papers dealing with T-norm selection are [15], [16]. Our work
differs from [15], instead of finding the city-block distance
between all the speaker model pairs and impostor utterances,
we use KL distance between the speaker models in the selected
clusters. Our work also differs from [16], in that we find a
Monte-Carlo approximation of KL divergence and instead of
finding the nearest speakers, we cluster the speaker models.
The advantage of SMC is that we can select any number of
cohorts without re-estimating the distances between all the
speaker model pairs.

This paper is organized as follows. In Section II, we describe
our method of speaker model clustering. In Section III, we
describe the selection of cohort models for T-norm and impostor
utterances for Z-norm using SMC. In Section IV, we describe
the experimental evaluation and provide results using TIMIT,
NTIMIT and NIST-2002 corpora; these corpora are among the
most common, large population speech databases used in SV
research. We conclude the article in Section V.

II. SPEAKER MODEL CLUSTERING

The earlier work dealing with the cohort selection for T-
norm used some broad client-specific information, such as
matching the speaker’s sex or enrollment handset type [5].



More client-specific, data driven approaches for selecting the T-
norm models are required [15]. There has been little research
in finding the number of impostor utterances and diversity in
utterances required for estimating the Z-norm parameters.

In [17], we proposed speaker model clustering (SMC) for
speeding-up the test stage computations in a speaker identifica-
tion (SI) system. The objective of SI is to determine which voice
sample from a set of known voice samples best matches the
characteristics of an unknown input voice sample [18]. Similar
to SV, in SI also speaker models are built during training.
However, during testing, the log-likelihood score of unknown
test utterance is computed against all the speaker models in
the database and maximum scoring speaker is identified. In
SI, likelihood computations between test feature vectors and
all the speakers in the database can be time consuming and
detrimental to applications where fast SI is required [17].

Thus to speed-up the test stage computations, we proposed
to cluster the speaker models after the training models are built
using simple k-means algorithm. During testing, we select only
a subset of clusters containing speaker models which are likely
to give large likelihood values for the given test utterance.

In order to develop clustering methods which are based on
the k-means algorithm and can scale with population size, we
begin by representing the speaker model simply as a point in
L-dimensional space determined by the weighted mean vector
(WMV) [17]

μ̄ =

WX
i=1

wiμi. (4)

where W is the number of component densities in the GMM.
From (4), one can conveniently define the centroid of a cluster
of GMM speaker models as

r =
1

K

KX
k=1

μ̄k (5)

where μ̄k is the WMV for λk and K is the number of speaker
models in the cluster. Fig. 2 gives an illustration of the speaker
model space. In order to select the cluster that will be searched
in the test stage, the average of test feature vectors from
the unknown speaker is computed. Next, Euclidean distance
between this average and cluster centroids are computed and
the nearest cluster is searched. Rather than selecting a single
cluster to search, we selected a subset of clusters ranked
according to the distance between the average of test feature
vectors and cluster centroids. Using a subset of clusters allows
a smooth trade-off between accuracy loss (due to searching too
few clusters) and speed. Using this approach we could gain a
speed-up of 3× with little or no loss in accuracy on TIMIT and
NTIMIT speech corpora [17].

Although our work in [17] shows that Euclidean distance
based clustering works for SI systems, the SV decision in (1)
is based on log-likelihood measure and not on an Euclidean
distance. As the cluster centroid does not have the required
GMM parameters {wi, μi,Σi}, many distance measures such
as the Kullback-Leibler (KL) divergence cannot be directly used
in conventional k-means clustering.

To avoid the centroid not having the sufficient GMM param-
eters and to facilitate the clustering based on KL divergence,
we identify the speaker model, λCR

n which is nearest to each

Cluster representative

Speaker model

Cluster centroid

*

*
*

*

*

Fig. 2. Space of speaker models and clusters.

cluster centroid

λCR
n = arg min

1≤s≤S
d1(λs, rn), 1 ≤ n ≤ N. (6)

Where d1 is defined as

d1(λs, rn) =
h
(μ̄s − rn)T (μ̄s − rn)

i1/2

. (7)

and N is the total number of clusters. This speaker model
is called the “cluster representative” (CR) and is illustrated in
Fig. 2. Below, we present a KL-divergence based distance
measure which can be used in k-means for partitioning the
speaker model space into N clusters.

A natural “distance” measure between two distributions f and
g is KL divergence,

D(f ||g) =

Z
f(x) log

f(x)

g(x)
dx (8)

however, there is currently no known closed-form expression
for the KL divergence between GMMs which could be used
for speaker model clustering [19]. Several distance measures
between GMMs have alternatively been proposed and inves-
tigated for application to speaker recognition [19]. One of
these methods uses actual acoustic data (feature vectors) from
speakers to approximate the KL divergence between any two
speaker models.

Following the approach in [19], we propose a distance
measure which can be used in speaker model clustering by
approximating the KL divergence from λs to λCR

n with

d2(λs, λ
CR
n ) ≈ 1

M

MX
m=1

log p(xtrain
s,m |λs) −

1

M

MX
m=1

log p(xtrain
s,m |λCR

n ) (9)

where M is the number of test feature vectors. The algorithm
for clustering using the above KL approximation is given in
Algorithm 1.

III. SPEAKER MODEL CLUSTERING FOR NORMALIZATION

A. Clusters for T-norm

Test Normalization, as the name suggests, is performed at
the testing stage of a speaker verification system to reduce



Algorithm 1 Speaker model clustering using a log-likelihood
distance
1: Initialize cluster representatives, λCR

n , 1 ≤ n ≤ N using
randomly-chosen speaker models

2: Compute distance using (9) from λs to λCR
n , 1 ≤ s ≤ S

3: Assign each λs to the cluster with the minimum distance
4: Compute new cluster centroids using (5) and determine λCR

n

using (6)
5: Goto step 2 and terminate when cluster membership does

not change.

inter-session variability. Fig. 3 shows the block diagram of
clusters for selecting the cohort models for T-norm. Speaker
models are built from the utterances and along with the claimant
models are clustered to form N clusters according to the
clustering technique mentioned in Section II. The main idea
behind clustering being, we would rather consider a few cohort
models to estimate the T-norm parameters instead of all the
available models for our approach. P cohort models which are
in the same cluster as the claimant are then selected and
the claimant test utterance is scored against these models.
The mean and variance of these scores are our normalization
parameters. In the scenario where a cluster doesn’t have P
models, the clusters nearest to the present cluster according
to (9), are merged until we get the required number of models
for selection. In case the number of speakers in a cluster is
more than P , we select P models out of the available models
according to Algorithm 2 [4].

Cluster Representative

Claimant Models

Impostor Models
* Cluster Centroid

*

*
*

*

1 N

Models

Impostor Utterances

Claimant

Clustering

Feature Extraction
& GMM Modeling

Fig. 3. T-norm selection procedure

Algorithm 2 Selecting Cohort models for T-norm
1: Let the available speakers be Q(> P ). Set of Q speakers

be Q(i) and let required set of P speakers be P(i) for
speaker i

2: Move the closest speaker according to (9) (between
speaker i and all the speakers in Q(i)) from Q(i) to P(i),
P ′ = 1

3: Move speaker q from Q(i) to P(i), where q is found by

q = arg max
q∈Q(i)

8<
:

1

P ′
X

p∈P(i)

d2(λp, λq)

d2(λi, λq)

9=
; , P ′ ← P ′ + 1

4: Repeat step (3) until P ′ = P

The cohorts selected according to the above algorithm are

nearest to the claimant in that cluster and maximally spread
from each other [4]. Researchers in [15], [20] suggested that
cohort models closest to the claimant would yield lower EER
than randomly selected ones. This process is repeated for all
the speakers in the database.

B. Clusters for Z-norm

Similar to T-norm, speaker dependent mean and variance are
estimated here again from impostor score distribution but this
time instead of cohort models we have impostor utterances.
Here again, we cluster the impostor models together with the
speaker model into N clusters as we intend not to consider all
the available impostor utterances to estimate the normalization
parameters. Once the clustering is done, the selection of P
near cohorts is same as that of T-norm. For the T-norm, the
cohort models under consideration and the speaker should be
from the same corpus unlike Z-norm where in there no such
constraint on the selection of impostor utterances.

IV. EXPERIMENTS AND RESULTS

Experiments have been performed on the TIMIT, NTIMIT and
NIST 2002 corpora. To demonstrate the applicability of the
methods proposed in Section II to a wide variety of GMM-UBM
systems, we have added some additional elements such as
delta MFCCs, cepstral mean subtraction (CMS) and RASTA
processing depending on the corpus being used. Specifically,
our baseline system uses an energy-based voice activity detec-
tor to remove silence; feature vectors composed of 29 MFCCs
for TIMIT, 20 MFCCs for NTIMIT and 13 MFCCs + 13 delta
MFCCs for NIST 2002 extracted every 10 ms using a 25 ms
hamming window; CMS and RASTA processing are applied
to NIST 2002. A 1024 component density UBM is built for
each corpus by concatenating the training feature vectors of
all the speakers within that corpus. Individual speaker models
have then been built by MAP adaptation of parameters of the
mean alone with a relevance factor of 16. For TIMIT/NTIMIT,
we use approximately 24s training signals and 6s test signals
and for NIST 2002 (one speaker detection cellular task) we use
approximately 90s training signals and 30s test signals. Our
system has baseline (no normalization) EERs of 0.11%, 3.64%
for 630-speaker TIMIT,NTIMIT corpus respectively. For the 330-
speaker NIST 2002 corpus our baseline EER of 12.25% agrees
with the value published in [14]. In addition to the EER, another
metric to measure the performance of SMC has been included
called the minimum decision cost function (DCF), defined in [14]
as

DCF = 0.1 × Pr(miss) + 0.99 × Pr(falsealarm) (10)

A. T-norm experiments

Our first set of experiments consists of observing the change
in EER while varying the number of T-norm models used. A
comparison between AT-norm and SMC for each of TIMIT,
NTIMIT and NIST 2002 corpus is summarized in Tables I, II
and III respectively. We observe that for TIMIT SMC performs
better than AT-norm for cohort size of 20 and equals AT-norm’s
performance for 40 and 60 cohorts. We see that there is only
a little improvement in the EER as we move from 20 cohorts
to 40 cohorts in SMC. Thus we can achieve a similar EER
using 20 cohorts with the SMC approach as opposed to 40 or
more cohorts with the AT-norm. This is seen as an advantage



in computation as T-norm is performed online and we would
be scoring against only half the number of models for each
speaker. For NTIMIT, comparing the EER values we observe
that SMC outperforms AT-norm for all the cohort sizes consid-
ered. Also for the NIST corpus, we see that SMC has done
better than AT-norm for different cohort sizes in our experiments.

TABLE I
EER COMPARISON BETWEEN AT-NORM AND SMC T-NORM WITH

VARYING COHORT SIZES FOR TIMIT DATABASE

Cohort EER
Size AT-norm SMC
20 0.31% 0.18%
40 0.16% 0.16%
60 0.16% 0.16%

TABLE II
EER COMPARISON BETWEEN AT-NORM AND SMC T-NORM WITH

VARYING COHORT SIZES FOR NTIMIT DATABASE

Cohort EER
Size AT-norm SMC
20 3.33% 3.29%
40 3.35% 3.10%
60 3.17% 3.04%

TABLE III
EER COMPARISON BETWEEN AT-NORM AND SMC T-NORM WITH

VARYING COHORT SIZES FOR NIST 2002 DATABASE

Cohort EER
Size AT-norm SMC
10 11.5% 8.5%
20 11.5% 8.0%
30 10.5% 7.5%

In Figs. 4, 5 and 6, we plot the detection error trade-off (DET)
curves for TIMIT, NTIMIT and NIST 2002 corpora respectively.
For TIMIT,the lowest EER values achieved by both SMC and
AT-norm are identical. But for a relatively smaller cohort size
of 20 itself SMC achieves an EER which is quite close to its
lowest value and outperforms AT-norm at this level by around
0.12%. Also the minimum DCF values drops from 1.2×10−3 to
1.0 × 10−3 when SMC is used instead of AT-norm. In the case
of NTIMIT, the lowest EER value achieved by SMC is better
than that of AT-norm by 0.13% but the minimum DCF raises to
1.82×10−2 from 1.80×10−2. Similarly for NIST, SMC surpasses
the lowest EER value from AT-norm by a margin of 3% and the
minimum DCF value drops from 9.40× 10−2 in the case of AT-
norm to 8.12× 10−2 for SMC. We notice that for the TIMIT and
NIST corpora, SMC has lower false alarm rate than AT-norm for
the entire operating range . For NTIMIT, for operating conditions
with a low miss detection rate SMC has a better false alarm rate
compared to AT-norm.

B. Z-norm experiments

For Z-norm experiments we compared the performance of
SMC Z-norm against the conventional Z-norm technique. By
conventional Z-norm we mean that all available utterances are
utilized for estimating the Z-norm parameters instead of only
the P “closest” utterances based on SMCs. Our system has
baseline (no normalization) EERs of 0.11%, 3.64% and 12.25%
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on TIMIT, NTIMIT and NIST-2002 corpora respectively. Using
conventional Z-norm techniques our system has an EER of
0.12%, 3.64% and 12.12% on TIMIT, NITIMIT and NIST-2002
corpora respectively.

TABLE IV
EER VALUES FOR SMC Z-NORM WITH VARYING NUMBER OF

IMPOSTOR UTTERANCES. EER FOR CONVENTIONAL Z-NORM IS
SHOWN IN PARENTHESIS.

Number of TIMIT NTIMIT
Impostor Utterances (0.12%) (3.64)
20 0.16% 3.51%
40 0.13% 3.55%
60 0.12% 3.65%

Similar to T-norm experiments, EER with varying number
of impostor utterances is shown in Table IV for TIMIT and
NTIMIT corpora and in Table V for NIST 2002 corpus. For TIMIT,
SMC Z-norm equals the performance of the conventional Z-
norm yielding a lowest EER of 0.12% which is higher than the
baseline value of 0.11%. Our experiments reveal that because
of the proximity of TIMIT speech to ideal conditions, score
normalization did not improve the baseline EER value. For
NTIMIT, SMC Z-norm achieved better EER values for different
number of impostor utterances considered. The lowest being
3.51% using 20 impostor utterances as against an EER of
3.64% using conventional Z-norm. For the NIST corpus (Ta-
ble V), using 10 impostor utterances, SMC Z-norm yields an
EER which is little higher than the conventional Z-norm. It
performs marginally better than the conventional technique for
20 impostor utterances and is as good as the conventional
technique when 30 impostor utterances are considered for Z-
norm parameter estimation.

TABLE V
EER VALUES FOR SMC Z-NORM WITH VARYING NUMBER OF

IMPOSTOR UTTERANCES. EER FOR CONVENTIONAL Z-NORM IS
SHOWN IN PARENTHESIS.

Number of EER
Impostor Utterances (12.12%)
10 13.60%
20 12.11%
30 12.12%

We observe that on TIMIT corpus, the performance of both
SMC and conventional Z-norm is similar which is consistent with
Fig. 7. The minimum DCF value drops off from 5.4405×10−4 to
5.0481 × 10−4 as we move from conventional Z-norm to SMC.
For NTIMIT, from Fig. 8 we observe that the performance of
conventional Z-norm technique is better than SMC. However,
EER achieved by conventional technique is close to 3.64% and
by applying SMC Z-norm we could reduce it to 3.51%. The
minimum DCF value changed from 2.44 × 10−2 to 2.55 × 10−2

when SMC replaces conventional Z-norm. For the NIST corpus
from Fig. 9, SMC and conventional Z-norm yield similar results
with SMC proving to be 0.01% better in terms of EER. The
minimum DCF value drops from 9.03 × 10−2 to 8.84 × 10−2

when SMC replaces the conventional technique. The False
alarm rate for TIMIT using SMC is nearly equal to that of
the conventional technique for operating conditions at low miss
detection probabilities. On NIST-2002 corpus, only for operating
conditions with a low miss detection rate does SMC have a
better false alarm rate compared to conventional Z-norm.
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V. CONCLUSIONS

Score normalization is an important phase in any speaker
verification system which transforms the output scores to mini-
mize score variability. It relies on having a global threshold for
the entire database to accept or reject a claim. To estimate the
normalization parameters, we need a set of impostor utterances
or cohort models. In this paper, we proposed a new method
called speaker model clustering for the clustering of speaker
models before the selection of the cohort set. This method
helps us select the utterances or models nearest to the speaker
according to certain distance criteria. Clearly, we observe that
the selection of impostor utterances for Z-norm on the basis
of SMC either outperforms or is as good as the conventional
Z-norm technique. Also the selection of cohort models for T-
norm based on SMC has outperformed the AT-norm. In case
of the T-norm, SMC did better than AT-norm for all the three
corpora either in terms of computation or in achieving lower
EER value. For Z-norm, SMC performed no better than the
conventional method on all the three corpora. In general, the
minimum DCF value was reduced using SMC as compared to
AT-norm or conventional Z-norm. The SMC-based approach for
cohort selection used in T- and Z- normalizations can be applied
to other normalizations.
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