FACE RECOGNITION USING DISTRIBUTED, MOBILE COMPUTING

Gregorio Hinojos and Phillip L. De Leon

New Mexico State University
Klipsch School of Electrical and Computer Engineering

Las Cruces, New Mexico, U.S.A.
ghhinojos@gmail.com, pdeleon@nmsu.edu

ABSTRACT

This paper describes a distributed computing framework called Blue-
Hoc, that uses mobile devices connected using a Bluetooth, wireless
ad hoc network. For a network composed of different devices, we
have developed a load balancing method to optimize performance of
BlueHoc. The eigenfaces technique for face recognition is imple-
mented and used to benchmark performance. With four devices and
an 80 subject face database, we can achieve a speedup (including all
overheads) of 1.37x without load balancing and with a 40 subject
database a speedup of 1.08 x with load balancing. Because of fixed
communications and initialization costs, the speedup factor can grow
as the number of subjects in the recognition system grows. Conse-
quently, by aggregating the computing capabilities of local mobile
devices, BlueHoc provides an effective solution for distributed mo-
bile computing.

Index Terms— Mobile computing, distributed computing, face
recognition

1. INTRODUCTION

The pervasiveness and computational capabilities of mobile devices
have grown at a remarkable rate in recent years [1-3]. The ubiquity
of mobile devices presents an untapped resource that can be utilized
to solve a variety of distributed computing problems which are im-
practicable to solve using a single mobile device or where access to
conventional computing resources is limited. Current efforts towards
combined mobile computing have focused on cloud computing sys-
tems, [4—6]. These systems are server dependent, where the server
farms out work to the connected devices via WiFi.

Distributed computing architectures using the Bluetooth com-
munication standard and mobile devices have been proposed [1-3].
In [1], the BlueCube protocol was proposed for constructing a hy-
percube structure using Bluetooth-connected mobile devices. Blue-
Cube allows for automatic connectivity when at close proximity and
is based on three phases: 1) ring construction which is an initializa-
tion phase, 2) scatternet construction which manages piconet con-
nections and performs role switching to reduce the number of packet
collisions, and 3) BlueCube construction which establishes a net-
work structurally similar to a hypercube. The reults presented from
BlueCube focused on packet transmission and collision and shortest
and disjoint paths as opposed to computational performance.

In [3], the BlueHydra device communication paradigm based
on Bluetooth was proposed and described. BlueHydra used the
Marge Java Bluetooth framework for Bluetooth communication and
JavaScript Object Notation (JSON) as a method invocation request
and message response. Additionally, BlueHydra used the RFCOMM

protocol for all Bluetooth connections. Performance results from
BlueHydra are based on summing the elements of a floating-point
array. Each device in the network receives a subarray whose size
is equal to the size of the array divided by the number of network
devices. BlueHydra’s results with a five device network, showed a
maximum speedup of 1.92x, when running 50,000,000 iterations of
their computational function [3].

In [7], a distributed computing cluster composed of mobile de-
vices running Debian Linux was constructed via USB and WiFi con-
nections with a PC managing the cluster through a USB hub or a
WiFi router. The LINPACK standard library was used to benchmark
the cluster and the distribution was done via the Message Passing In-
terface (MPI) standard. The reported performance results reflected
a close-to-linear scalability on floating point operations. However,
no real-world application was implemented for benchmarking pur-
poses.

In prior work, Hinojos, et. al. developed a distributed computing
framework called BlueHoc, that uses Android mobile devices con-
nected using a Bluetooth, wireless ad hoc network [8]. Unlike other
distributed mobile computing systems in [4-6], BlueHoc is server-
independent and creates a network with devices in close proximity.
Similar to BlueCube, BlueHoc allows for role switching between
master and slave nodes [1], however unlike BlueCube, BlueHoc has
been implemented and evaluated on actual mobile devices as op-
posed to simulators. In contrast with BlueHydra, BlueHoc allows
any device to act as master or slave in the computing network and
ensures the system is functional in the event that a device drops
from the network. BlueHoc is significantly different than the sys-
tem presented in [7] in the following ways. First, BlueHoc runs on
the popular Android OS which is commonly found on mobile de-
vices. Second, BlueHoc communicates strictly over Bluetooth and
is thus limited to devices in local proximity but does not require a
centralized router or hub. Third, we benchmark our system using a
real-world application, namely distributed face recognition.

In order to evaluate performance of BlueHoc, we have imple-
mented an eigenfaces-based face recognition system which utilizes
the distributed mobile computing environment to recognize image
faces acquired on the master device in the network. Such an appli-
cation and computing architecture could be useful in remote areas,
such as border crossings or hostile areas where computing and net-
work resources are limited, in order to identify subjects using only
available, local, mobile computing resources.

This paper is organized as follows. In Section 2, we describe
the BlueHoc distributed computing framework including informa-
tion on system design, connection mechanisms, and message pass-
ing. In Section 3, we briefly describe the eigenfaces face recognition
technique and in Section 4, we describe the initialization of the sys-

Master
Node

JobData _
-
r //
-« -
t e

—~
—
-
-
v
»
!k..j"l

Fig. 1. In the BlueHoc architecture, the master transmits data sub-
sets to all slave devices, makes a computation request, and combines
slave results into a final result.

Slave Node

tem, distributed face recognition application, and load balancing. In
Section 5, we describe the experimental setup and provide the bench-
mark results. Finally, in Section 6, we conclude the paper.

2. BLUEHOC

2.1. System Design

BlueHoc is based on a master/slave architecture where a master sub-
mits requests for computation to slave devices in the network as
shown in Figure 1. A master device is one with more than one con-
nection to other devices while slave devices are only connected to
the master device. In the current implementation of BlueHoc, a sin-
gle master device can connect with up to seven slave devices due to
Bluetooth limitations [9]. The architecture is static in the sense that
the master waits for all the slaves to join the network and the slave
devices must remain connected throughout the work interval. Over
time, slave devices may join or drop out of the network and BlueHoc
will adjust each device’s workload according to the size of the net-
work. If the master device drops out, the network breaks apart and
a new network could be constructed using an existing or new device
as the master device.

A distributed computing job begins with the master partitioning
and transmitting data subsets to all slave devices and making a com-
putation request. Next, the data is processed by slave devices and
results transmitted back to the master. Finally, the master combines
intermediate results and produces a final result.

2.2. Server and Client Side Connection Mechanisms

When creating a connection, both server-side and client-side mech-
anisms must be implemented. On one side, the client or slave device
initiates the connection using the server’s or master’s MAC address.
On the other side, the server opens a socket and waits for a connec-
tion. The connection is authenticated from both sides using a uni-
versally unique identifier (UUID). The server begins by opening a
BluetoothServerSocket and listening for incoming requests.
A connection will only be accepted if a slave device requests a con-
nection with a UUID matching the server UUID. In order for a client
to initiate a connection, a remote BluetoothDevice is found by

-
1
I
1
1
1
1
I
|
I
1
1
1
I
1
I
1
1
1
1
I
1
I
1
I
1
I
1

[j
(

v
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
I
1
1
1
1
1
1
1
1
1
-

Fig. 2. In the BlueHoc message passing cycle, the master transmits
data subsets to slave devices and makes a computation request. Once
slave devices have completed the request each asynchronously trans-
mits the intermediate result to the master which then computes the
final result.

querying the list of paired devices or by scanning for available de-
vices [10].

UUIDs are hard-coded in the BlueHoc framework so that they
can be referenced by both server and client sides. In our implemen-
tation, seven UUIDs are created and stored in each device in order
to establish the supported connections. Before a connection is made,
the client selects a UUID when requesting a connection. When the
server receives the request, it iterates through the possible UUIDs to
find a match and establishes a connection.

2.3. Message Passing

Message passing allows processes to send/receive messages to/from
other processes and includes method invocation, system information,
and data packets. In BlueHoc, messages are passed asynchronously
from master to slaves and vice-versa, but messages are not passed
between slaves. Computation across BlueHoc is conducted syn-
chronously meaning that the master sends a method invocation to the
slaves requesting computation and the master waits until all slaves
have completed the computation request and returned the intermedi-
ate result. Figure 2 illustrates the message passing cycle.

In BlueHoc, messages sent from the master to the slaves contain
function calls to be executed. Messages are “active” in the sense
that they are capable of doing processing on their own since each
message has an identifier to be used by the handler to determine the
function to be executed upon message arrival [11]. Furthermore,
computation of the active message is performed using the data in the
message as well as data stored in the receiving node (slave). These
messages are restricted to the single program, multiple data (SPMD)
programming model, where the sender and receiver know what data
can be accessed at the receiving node [11].

3. FACE RECOGNITION APPLICATION

To demonstrate the utility of BlueHoc in a real-world application,
we have developed a face recognition application. In face recogni-
tion, features are extracted from a person’s reference image(s) and
stored. In order to recognize an unknown person from a face im-
age, features are extracted and compared to the reference and the
closest match determines the identity of the unknown person in the

test image [12]. One of the most popular and relatively simple face
recognition techniques is the eigenfaces method [12-15].

The eigenfaces method consists of learning and classifying
stages. In the learning stage, for each person’s reference images,
we construct an image vector by stacking all columns of the image
matrix, subtract the mean vector (average face image) from each im-
age vector, and compute the covariance matrix of the vectors. Next,
eigen-analysis of the covariance matrix is performed and the eigen-
vectors associated with the D largest eigenvalues, called principal
components, are retained [12]. Finally, the mean-centered image
vectors are projected onto the eigenspace spanned by the principal
components.

In the classifying stage, an image is acquired of an unknown
person, the columns of the image matrix are stacked, the average
face image is subtracted, and the resulting vector is projected onto
the eigenspace. The euclidian distance is then calculated from the
projected test image to all training images in the database. The image
with the closest distance is selected and the person is identified [12].

4. FACE RECOGNITION OVER BLUEHOC

4.1. Distributed Face Recognition

Before any work is done, the BlueHoc system must be initialized.
System initialization consists of executing the learning stage on any
device containing the reference images. A facedata.xml file is
created which contains the projection matrix, mean vector, and ref-
erence image vectors and this file is propagated to all other devices.

Distributed face recognition using BlueHoc begins with the mas-
ter device acquiring a face image. The master then preprocesses the
image, which consists of creating a bounding box around the face,
cropping the image, converting to black and white, and performing
histogram equalization. The processed image is projected to the face
space and then transmitted to the slave devices along with a job re-
quest. Included in the job request are the indices to the subset of
reference image vectors that the slave scores against via a distance
calculation. Each slave device returns the best match (based on min-
imum distance) from their respective subsets and the master selects
the best overall match from the minimum distance of the intermedi-
ate (slave) results.

4.2. Load Balancing

In our initial implementation of face recognition over distributed,
mobile devices, each data subset contained the same number of ref-
erence images. However, for a heterogeneous network of slave de-
vices with unequal computing capabilities, the load is unbalanced
and the overall compute time is constraint by the slowest device. In
our load-balanced implementation, the device’s computing capabili-
ties are known by the master ahead of time and are factored into the
range of reference image vector indices each slave scores against.
In this way, the computational load is balanced accordingly and the
overall computation time is minimized compared to the unbalanced
implementation.

A hash table was created containing the devices’ MAC addresses
and processing rates. Before each job request, the master looks up
the processing rate for the ¢th slave device in the network using the
MAC address, and determines the number of reference images n;
that are to be processed,

; 1<i<N ey

n; =

| Mobile Device [Processor (quad-core) [ts ‘

Asus Transformer 1.2 GHz Tegra 3 T30L | 4.117
Nexus 7 1.3 GHz Tegra 3 3.593
Samsung Galaxy Note2 | 1.6 GHz Cortex-A9 2.959
Samsung Galaxy S3 1.4 GHz Cortex-A9 3.503

Table 1. Android devices used in BlueHoc. ts is the average time
for a single device to recognize a subject based on a 40 subject face
database.

where T; is the ith device’s processing rate, AT is average pro-
cessing rate for all devices, M is the number of face images in the
database, and N is the number of devices. The device’s process-
ing rate is predetermined by clocking the average time per distance
calculation.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup and Baseline Results

The devices used on BlueHoc consist of two smartphones and two
tablets (listed in Table 1) all running the Android OS (v4.0 or v4.1).
The designated master was the Samsung Galaxy S3. To ensure
consistent benchmarking results, all wireless services except Blue-
tooth were disabled, all non-essential processes were closed', and
all UI process indicators were disabled. The native Java function,
System.currentTimeMillis () was used for timing based
on the master device’s clock.

We use the AT&T Cambridge faces database a.k.a. the ORL
Database of Faces [16] which consists of 10 different face images
for each of 40 different subjects. By duplicating the set of images
and renaming the subjects, we created a larger database of 80 sub-
jects. For each trial, we randomly chose seven images per person
for training and three images per person for testing. Classification
accuracy for the 40 subject database, averaged over four devices and
ten trials, was 96% which is consistent with results reported in liter-
ature [12-14,17].

In order to measure the baseline performance of the face recog-
nition system using a single mobile device, a test face image is dis-
played on a computer monitor, the device captures the image via the
device’s camera, performs the computation required for recognition,
and decides the identity. We do not include image acquisition time
in the overall measure.

Using one of the test images, we clocked the recognition time for
each trial for various database sizes, M. The average time per recog-
nition, ¢, averaged over 10 trials serves as the reference or baseline
time. For each device, the average time per recognition for a 40
subject database, ¢, is shown in Column 3 of Table 1. The average
recognition time for a single device (averaged over the various de-
vices) as a function of database size is shown with the magenta line
in Figure 3.

5.2. Benchmark Results using BlueHoc

In order to measure the performance of the distributed face recogni-
tion system using BlueHoc, the system follows the event sequence

ISome applications such as Samsung’s backup, suggest, and voice apps
are pre-installed and could not be closed. Additionally, pre-installed device-
usage monitoring apps are also not able to be completely closed. Based on
our observations, these applications have negligible impact on the results.

10

—+—1 Device
9 —©—2 Devices A

—=—3 Devices
sh ——4 Devices

Average Recognition Time (sec)

1 , , ,
20 30 40 50 60 70 80
Database Size(Subjects)

Fig. 3. Average recognition time for BlueHoc versus a face database
with 20, 40, and 80 subjects. As the database size grows, additional
devices lower the recognition time despite transmission overheads.

described in Section 4.1. We clock the time from the acquisition of
the face image by the master device, image preprocessing, projec-
tion to face space, transmission of feature vector to slave devices,
feature vector scoring, transmission of identity with minimum dis-
tance by slave devices, and the overall identification by the master
device based on minimum distance of identities. The average time
per recognition over 10 trials for the distributed system is denoted
tq and the speedup gain with the distributed system compared to the
average single device is

G = ts/ta. 2)

Figure 3 shows the average recognition time for BlueHoc con-
sisting of various numbers of devices versus a face database with
20, 40, and 80 subjects. The results were averaged using all pos-
sible combinations of devices (yC4 where N is the number of de-
vices in the network out of the four possible devices listed in Table
1). Compared with a single device, the two-, three-, and four-device
distributed computing network shows a 1.24x, 1.32x, 1.37x, re-
spectively speedup for the 80 subject database. The three- and four-
device networks show only small gains due to communications over-
heads but clearly illustrate that as the face database size grows, ad-
ditional devices can increase performance.

Figure 4 shows the average execution time for BlueHoc consist-
ing of various numbers of devices versus a face database with 40
and 80 subjects subjects with load balancing. The results were aver-
aged using all possible combinations of devices. Comparing Figure
3 with Figure 4, we see that load balancing further decreases average
recognition times.

Regarding Figures 3-4, we further observe the following. First,
as the face database size increases, the potential for speedup in-
creases because of significantly increased required computation.
Second, on small-size databases, as the network size increases the
speedup does not improve and potentially decreases due to fixed
communications overheads. Third, as the size of the database in-
creases, it is beneficial to add devices to the network, conversely
when database is small there are only small gains (if any) to be had
from additional devices.

3.5 T T T
—e—BlueHoc w/o Load Balancing
—— BlueHoc w/Load Balancing

3.45

3.4

3.35

3.3

3.25

Average Recognition Time (sec)

3.151 b

3.1
1 1.5 2 25 3 3.5 4

Number of Devices

Fig. 4. Average recognition time of BlueHoc with and without load
balancing as a function of the number of devices in the network.
Load balancing improves BlueHoc performance.

6. CONCLUSIONS

We have developed and implemented a framework for distributed
mobile computing over Bluetooth, adhoc networks called BlueHoc.
Such a system may be useful in remote areas where computing and
communications resources are limited. We have tested BlueHoc us-
ing a face recognition application and benchmarked the system for
different sizes of face databases and number of devices in the net-
work. With four devices and an 80 subject face database, we can
achieve a speedup (including all overheads) of 1.37x without load
balancing and with a 40 subject database a speedup of 1.08 x with
load balancing. We have also demonstrated that as the face database
size grows, the speedup factor can grow due to fixed communica-
tions and initialization costs.

7. REFERENCES

[1] C. Chang, C. Chang, and J. Sheu, “BlueCube: Constructing
a hypercube parallel computing and communication environ-
ment over Bluetooth radio systems,” J. Parallel Distrib. Com-
put., vol. 66, no. 10, pp. 1243-1258, Oct. 2006.

[2] R. Shepherd, J. Story, and S. Mansoor, “Parallel computation
in mobile systems using Bluetooth scatternets and Java,” in
Proc. Int. Conf. Parallel and Distrib. Comput. and Networks,
2004.

[3] M. Gartrell, J. Kelly, and S. Razgulin, “BlueHydra: Dis-
tributed Computing on Mobile Bluetooth-Enabled Devices,”
Tech. Rep., Department of Computer Science, University of
Colorado, Bouler, CO., 2008.

[4] J. Shafer, S. Rixner, and A.L. Cox, “The hadoop dis-
tributed filesystem: Balancing portability and performance,”
in Perf Anal. of Syst. Soft. (ISPASS), IEEE Int. Symp. on, 2010,
pp. 122-133.

D. Huang, X. Zhang, M. Kang, and J. Luo, “Mobicloud: Build-
ing secure cloud framework for mobile computing and com-
munication,” in Service Oriented System Engineering (SOSE),
IEEE Int. Symp. on, 2010, pp. 27-34.

[5

—

(6]

(7]

(8]

(9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

E. Marinell, “Hyrax: Could computing on mobile devices us-
ing MapReduce,” M.S. thesis, School of Computer Sience,
Carnegie Mellon University, Pittsburgh, PA, 2009.

F. Busching, S. Schildt, and L. Wolf, “Droidcluster: Towards
smartphone cluster computing — the streets are paved with po-
tential computer clusters,” in Distrib. Comput. Syst. Workshops
(ICDCSW), Int. Conf. on, 2012, pp. 114-117.

G. Hinojos, C. Tade, S. Park, D. Shires, and D. Bruno, “Blue-
hoc: Bluetooth ad-hoc network android distributed comput-
ing,” Int. Conf. on Parallel and Distrib. Process. Tech. and
Appl. (PDPTA), Jul. 2013.

“http://www.bluetooth.com/,” Feb. 2013.

“http://developer.android.com/index.html,’
Feb. 2013.

T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, “Ac-
tive messages: a mechanism for integrated communication and
computation,” ISCA Annual Int. Symp. on Computer Archit.,
vol. 19, pp. 256-266, 1992.

M. Turk and A. Pentland, “Face recognition using eigenfaces,”
Proc. IEEE Computer Society Conf. Computer Vision and Pat-
tern Recognition, pp. 586-591, 1991.

J. Zhang, Y. Yan, and M. Lades, “Face recognition: Eigen-
faces, elastic matching, and neural nets,” Proc. IEEE, vol. 85,
no. 9, Sep. 1997.

A Tolba, A El-Baz, and A El-Harby, “Face recognition: A
literature review,” Int. J. Signal Process, vol. 2, pp. 88-103,
2006.

K. Kyungnam, “Face recognition using principle component
analysis,” in Int. Conf. on Computer Vision and Pattern Recog-
nition, 1996, pp. 586-591.

F. Samaria and A. Harter, ‘“Parameterisation of a stochastic
model for human face identification,” in Proc. IEEE Workshop
on Appl. of Computer Vision, Dec. 1994, pp. 138-142.

R. Jafri and H. Arabnia, “A survey of face recognition tech-
niques,” J. Info. Process. Syst., vol. 5, no. 2, pp. 41-68, Jun.
2009.

