
PERFORMANCE OF I-VECTOR SPEAKER VERIFICATION AND
THE DETECTION OF SYNTHETIC SPEECH

Richard D. McClanahan

Sandia National Laboratories
Albuquerque, N.M., U.S.A.
rmcclan@sandia.gov

Bryan Stewart, Phillip L. De Leon

New Mexico State University
Klipsch School of Elect. and Comp. Eng.

Las Cruces, N.M., U.S.A.
{brystewa,pdeleon}@nmsu.edu

ABSTRACT

In this paper, we present new research results on the vulnerability of
speaker verification (SV) systems to synthetic speech. Using a state-
of-the-art i-vector SV system and evaluating with the Wall-Street
Journal (WSJ) corpus, our SV system has a 0.00% false rejection
rate (FRR) and 1.74× 10−5 false acceptance rate (FAR). When the
i-vector system is tested with state-of-the-art speaker-adaptive, hid-
den Markov model (HMM)-based synthetic speech generated from
speaker models derived from the WSJ journal corpus, 22.9% of the
matched claims are accepted highlighting the vulnerability of SV
systems to synthetic speech. We propose a new synthetic speech de-
tector (SSD) which uses previously-proposed features derived from
image analysis of pitch patterns but extracted on phoneme-level seg-
ments and which leverages the available enrollment speech from the
SV system. When the SSD is applied to human and synthetic speech
accepted by the SV system, the overall system has a FRR of 7.35%
and a FAR of 2.34 × 10−4 which is lower than previously-reported
systems and thus significantly reduces the vulnerability.

Index Terms— Speech synthesis, Speaker recognition, Security

1. INTRODUCTION

Recently, text-to-speech (TTS) systems or speech synthesizers have
advanced to the point where they can be trained to a particular per-
son’s voice or target. Such training, using state-of-the-art speaker-
adaptive, hidden Markov model (HMM)-based speech synthesiz-
ers, now only requires relatively small amounts of non-ideal speech
which can be acquired in a variety of ways including through on-
line media [1], [2]. The speech is then used to adapt an average
(derived from other speakers) or a background (derived from one
speaker) synthesizer model yielding a target model. With the target
model, arbitrary speech utterances can be synthesized in real-time in
an acoustically similar fashion to the target voice.

In 1999, Masuko et. al., showed in a limited study that a speaker
verification (SV) system would accept identity claims based on syn-
thetic speech [3]. This work showed that synthetic speech provides
a potential means for an adversary to potentially gain system access
when speech is used to authenticate the identity claim.

In the decade after Masuko’s work, both SV and TTS systems
improved dramatically. Beginning in 2010, De Leon, et. al. rein-
vestigated the vulnerability of SV systems to synthetic speech using
state-of-the-art systems [4–6]. In the most recent work, [6], we ex-
amined SV systems based on the Gaussian mixture model-universal
background model (GMM-UBM) [7] and support vector machine
(SVM) using GMM supervectors [8]. We used 283 speakers from

the Wall Street Journal (WSJ) corpus which was partitioned into
non-overlapping datasets for SV enrollment (≈ 90 s signals), SV
testing (≈ 30 s signals), and TTS training (varying amounts from
73 s to 27 minutes) [6]. Although the WSJ corpus is not a standard
corpus for SV research, it is one of the few corpora that provides
several hundred speakers and sufficiently long signals required for
constructing each of the components within the TTS, SV, and SSD
systems [9]. We then created speaker-adaptive, HMM-based syn-
thetic test speech for each of the WSJ speakers. As we demonstrated,
under human speech the EERs were 0.284%, 0.002% for the GMM-
UBM, SVM system respectively. However, when subjected to syn-
thetic speech, the matched claim rate i.e. a synthetic signal matched
to a targeted speaker and an identity claim of that same speaker, was
over 81% for each of the SV systems demonstrating the vulnerability
of SV systems to synthetic speech.

In addition, vulnerabilities of SV systems to voice conversion,
i.e. conversion of a speaker’s voice into a target voice, have also
been reported as far back as 1999 [10]. Using state-of-the-art joint
density GMM (JD-GMM) and unit-selection techniques, researchers
in [11, 12] have recently evaluated the vulnerability of several SV
systems to voice conversion. In particular, a joint factor analysis
(JFA) SV system (precursor to the i-vector system) was shown to
have FARs increase from 3% to over 15% under JD-GMM voice-
converted speech [11]. In [12], researchers investigated both text-
independent and text-dependent GMM-UBM SV systems. For the
text-independent system, the EER (average of male and female tests)
increases significantly under voice-converted speech from 16.2% to
28.8%, 26.7% using unit-selection, JD-GMM techniques, respec-
tively [12]. For the text-dependent system, the EER (average of
male and female tests) drops from 5.7% to 3.6%, 3.2% using unit-
selection, JD-GMM techniques, respectively [12]. These results col-
lectively illustrate that voice-converted speech also poses a threat to
SV systems.

Because of the vulnerability of SV systems to both synthetic
and voice-converted speech, researchers have proposed various
counter-measures and detectors [13]. In 2001, Satoh et. al. pro-
posed a method to detect synthetic speech based on the average
inter-frame difference of log-likelihood (IFDLL) [14]. However, in
2010 with state-of-the-art synthetic speech, it was demonstrated that
IDFLL could no longer discriminate between human and synthetic
speech [15]. In [5], a discriminator based on relative phase shift
(RPS) was proposed for detecting synthetic speech and it was shown
that the acceptance rate of synthetic speech, matched claimants
(matched claim rate) could be lowered from over 81% to 2.5% with
less than a 3% drop in the acceptance rate for human speech, true
claimants. However, the detector was found to be sensitive to the



vocoder used: the same vocoder used by the impostor must be used
to train the system which is not a general solution.

In [16], the authors proposed using additional features extracted
from the phase spectrum in order to detect voice-converted speech.
One feature, cos-phase, unwraps the phase spectrum and applies a
cosine function to normalized and a discrete cosine transform (DCT)
to reduce dimensionality of the feature vector [16]. A second fea-
ture, modified group delay function (MGDF), is based on the group
delay of a smoothed power spectrum and parameters used to empha-
size the spectral fine structure [16]. Evaluation with a JFA SV sys-
tem using the NIST 2006 SRE corpus and GMM-converted speech
shows a baseline EER of 16.8% which is reduced to 6.60% with the
cos-phase feature and 9.13% with the MGDF feature. Evaluation us-
ing unit-selection converted speech shows a baseline EER of 15.4%
which is reduced to 3.9% with the cos-phase feature and 4.6% with
the MGDF feature.

In [17], we proposed an utterance-level classifier for synthetic
speech detection based on features extracted from image analysis of
pitch patterns that did not require synthetic models matched to hu-
mans in the SV system or any a priori information regarding speech
synthesizers. These features which include the mean pitch stability,
mean pitch stability range, and jitter were found to provide good dis-
crimination between human and synthetic speech. Follow on work
in [18] proposed a word-level classifier using the same feature set
as in [17]. However, the results presented in [17] used an utterance-
level likelihood classifier and a different set of training and testing
corpora than what was presented in [18]. The utterance-level classi-
fier used in [17] was re-evaluated with the training and testing cor-
pora presented in [18] and the results showed 96%, 92% classifica-
tion accuracy for human, synthetic speech, respectively. The results
in [18] for the proposed word-level maximum likelihood classifier
using the Bhattacharyya weighted mean feature vector, showed im-
proved classification accuracy of 98%, 98% for human, synthetic
speech, respectively.

This paper reports our research on the performance of SV sys-
tems under synthetic speech and a proposed new method to detect
synthetic speech. First, we have implemented a state-of-the-art i-
vector SV system [19, 20] and evaluated it using synthetic speech.
As we will show, synthetic speech continues to pose a threat to SV
systems. Second, we propose a new synthetic speech detector based
on features extracted from image analysis of binary pitch patterns
from phoneme segments. Unlike prior work, this new detector does
not require a parallel human/synthetic corpus for training but rather
leverages the available enrollment speech (assumed to be human)
used in SV training and thus is more general and practical.

This paper is organized as follows. In Section 2, we briefly de-
scribe our implementation of an i-vector SV system, system devel-
opment, training and evaluation. In Section 3, we briefly describe
the proposed synthetic speech detector based on features extracted
from pitch patterns from phoneme segments. In Section 4, we pro-
vide the baseline evaluation of the SV system using the WSJ journal
corpus and synthetic speech derived from this corpus as well as per-
formance of the overall system with the synthetic speech detector.
Finally, we conclude the article in Section 5.

2. SPEAKER VERIFICATION SYSTEM

For this paper, we use the state-of-the-art i-vector SV system de-
scribed by Dehak, et. al. in [19, 20] and Garcia-Romero in [21].
We briefly describe the system, our implementation, system devel-
opment, training, and evaluation.

2.1. System Development

Speech signals from the NIST 2004, 2005, 2006, and 2008 SREs
were used in system development. This data was used for UBM
training, total variability (TV) training, and probabilistic linear dis-
criminant analysis (PLDA) parameter training. Our system is based
on 40-dimensional feature vectors extracted as follows. We extract
20 mel-frequency cepstral coefficients (MFCCs), including the ze-
roth coefficient, using a 25 ms Hamming window with 10 ms ad-
vance. MFCCs are then RASTA filtered and we compute the log
energy. The ∆ of the features are computed and appended to each
feature. Short-time mean and variance normalization is applied to
the feature vector using a 3 s window and vectors corresponding to
silence are finally removed.

The steps involved in system development include training the
GMM-UBM, estimation of the TV matrix, and parameter estima-
tion for PLDA. We construct a single gender-independent GMM-
UBM with 1024 components and diagonal covariance matrices using
the Expectation Maximization (EM) algorithm. The GMM-UBM is
trained using feature vectors from 30,000 randomly-selected utter-
ances from the NIST SRE corpora. We estimate a single gender-
independent TV matrix with a rank of 400 using the EM algorithm.
The TV matrix is trained from feature vectors extracted from the
NIST SRE corpora. PLDA parameters were then estimated using
a varying number of utterances per speaker. In our SR system, we
did not attempt to prevent overlap in training utterances between dif-
ferent system components nor did we attempt to limit our data to a
particular channel type such as telephone or microphone.

2.2. System Training

After system development, i-vectors for target speakers are extracted
from the WSJ corpus. In our prior work using the WSJ corpus,
we chose the pre-defined official training data set, SI-284, that in-
cludes 283 speakers from both WSJ0 and WSJ1 as material data [6].
For this research, we use all 340 WSJ speakers and training signals
which are approximately 180 s in length. After the i-vector is ex-
tracted, we compensate by applying length normalization.

2.3. System Testing

Once the system has been trained, we extract an i-vector for the
test speaker and use PLDA for scoring against the target i-vector.
No score normalization–such as z-norm or t-norm–is applied to the
PLDA output. We use WSJ test signals which were approximately
30 s in length.

2.4. Evaluation

The evaluation for human speech was designed so that each test ut-
terance has an associated true claim and 339 false claims (impostors)
yielding a total of 3402 tests. Our system has a 0.00% false rejection
rate (FRR) and 1.74 × 10−5 false acceptance rate (FAR), i.e. two
false acceptances out of the 340 × 339 possible imposter tests. The
low FRR and FAR are due to the ideal nature of the recordings in the
WSJ corpus and the accuracy of the i-vector SV system.

3. SYNTHETIC SPEECH DETECTOR

Figure 1 illustrates a SV system with a countermeasure for synthetic
speech. The test signal is applied to a synthetic speech detector
(SSD) after the SV system has initially accepted the identity claim
based on the signal [6]. If the SSD classifies the test signal as human
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Fig. 1. Integrated speaker verification (SV) and synthetic speech
detector (SSD) system. Only those claimants which are accepted by
the SV system are passed to the SSD. If the SSD classifies the speech
as human, the overall system accepts the claim.

speech, the claim is finally accepted, otherwise it is rejected. In this
section, we briefly summarize the SSD used in this research which
uses image-based pitch pattern features recently proposed in [17].

3.1. Image-Based Pitch Pattern Features

The pitch pattern, φ(t, τ), is calculated by dividing the short-range
autocorrelation function, r(t, τ) by a normalization function, p(t, τ)
which is proportional to the frame energy [22]

φ(t, τ) =
r(t, τ)

p(t, τ)
. (1)

Once the pitch pattern is computed, we segment into a binary pitch
pattern image through the rule

φseg(t, τ) =

{
1, φ(t, τ) ≥ θt
0, φ(t, τ) < θt

(2)

where θt is a threshold set to half the pitch pattern peak value at time
t. We compute φ(t, τ) for 2 ≤ τ ≤ 20ms and set θt = 1/

√
2 for all

t. An example pitch pattern image is shown in Fig. 2.
Extracting features from the pitch pattern is a multi-step process

and includes 1) silence removal, 2) computation of the pitch pat-
tern, and 3) image analysis. In the third step, image processing of
the segmented binary pitch pattern is performed in order to extract
the connected components, i.e. black regions in Fig. 2. The result-
ing connected components are then analyzed and used to compute
mean pitch stability, µS and mean pitch stability range, Rc which
are defined in [18] and are the elements of the feature vector,

x = [µS , Rc] . (3)

3.2. Synthetic Speech Detector based on Phoneme-Level Fea-
tures

Extending our prior work from [17, 18], we propose a new clas-
sifier for the detection of synthetic speech based on pitch pattern
feature vectors extracted from phoneme-level segments and which
also leverages enrollment speech used in training the SV system.
The classifier is illustrated in Fig. 3. In the training stage, for each
speaker enrolled in the SV system, we use an automatic speech rec-
ognizer (ASR) to parse the enrollment speech signal into phoneme-
level segments, extract the pitch pattern feature vectors for each seg-
ment corresponding to a voiced phoneme, and store vectors for each
unique phoneme.

Fig. 2. Segmented binary pitch pattern image from a human speech
signal [17]. The phrase is “The female produces a litter of two to
four young in November.” Pitch stability Sc, pitch stability range
Rc, upper edge τU, and lower edge τL are denoted.

As shown in Fig. 3, the SSD parses the test signal into its
phoneme segments using the ASR, pitch pattern feature vectors of
the voiced phoneme segments are extracted, and the Mahalanobis
distances are computed between the claimant speaker’s and the cor-
responding target speaker’s phoneme feature vectors. The mean of
the Mahalanobis distances across the test utterance is computed and
the claimant is classified as human if the distance is greater than
a pre-defined threshold set for equal error rates; otherwise, if the
distance is less than the threshold, the claimant speech is classified
as synthetic. The WSJ speech used in SV enrollment was used for
training the SSD and the WSJ human and synthetic speech used
in testing the i-vector SV system (see next Section), was used to
measure classifier (SSD) performance. The EER (of the stand-alone
SSD without the SV system) is found to be 32%.

Although the pitch pattern feature vectors are extracted from
segments corresponding to voiced segments, our research has shown
that the unvoiced phonemes such as the unvoiced plosives, unvoiced
fricatives, and affricates can be used to further improve the SSD ac-
curacy. If the claimant speaker was identified as human but a major-
ity of the aforementioned unvoiced phonemes in the test utterance do
not yield any connected components in the pitch pattern image, then
the claimant is classified as synthetic. With the use of the unvoiced
phoneme segments, the EER (of the stand-alone SSD without the
SV system) is further reduced to 12%. Figure 4 shows the detection
error tradeoff (DET) curve for the SSD which uses both voiced and
unvoiced phonemes for the classifier.

4. EXPERIMENTS AND RESULTS

4.1. Corpora

For this research, we use all 340 WSJ speakers and training signals
which are approximately 180 s and test signals which are approxi-
mately 30 s. The WSJ corpus was used to construct 340 different
speaker models using a speaker-adaptive, HMM-based speech syn-
thesis system, H Triple S (HTS) [23]. These WSJ HTS speaker mod-
els were used in Festival to generate the synthetic WSJ speech.



Fig. 3. Overview of the synthetic speech detector (SSD). In the train-
ing stage, enrollment speech from the SV system is used to provide
pitch pattern feature vectors for each speaker’s unique phonemes.
The SSD classifies speech as human or synthetic by computing dis-
tances from feature vectors extracted from the claimant’s speech and
the target speaker’s feature vectors.

4.2. Matched Claim Acceptance Rate

The i-vector SV system was evaluated using synthetic speech de-
rived from models based on the WSJ corpus. In this work, we find
a matched claim rate of 22.9% (78/340). Although this a significant
improvement over prior results with the GMM-UBM and SVM sys-
tems where we found over 81% of synthetic speech was accepted,
it nevertheless demonstrates the continued vulnerability of state-of-
the-art SV systems to synthetic speech.

4.3. Performance of Integrated SV and SSD System

The integrated SV and SSD system is illustrated in Fig. 1. For the
WSJ corpus, we have from Section 2.4 that the SV system accepts
340 true claimants and 2 impostors. Using 340 synthetic speakers
(matched to WSJ true claimants), we have from Section 4.2 that the
SV system accepts 78 synthetic speech signals and rejects 262 syn-
thetic speech signals. Of the 340 true human claimants which the
SV system accepts, the SSD correctly classifies 315 of these as hu-
man and 25 incorrectly as synthetic; both impostors are classified as
human. Of the 78 synthetic matched claimants which the SV system
accepts, the SSD incorrectly classifies 25 of these as human and 53
correctly as synthetic. Therefore, the false rejection rate (FRR) of
the overall system is 25/340 = 7.35% and the false acceptance rate
(FAR) is (2 + 25)/(340 · 339 + 340) = 2.34 × 10−4. These re-
sults are an improvement over the system presented in [6] since the
classifier does not require synthetic speech matched to each speaker
enrolled in the SV system. These results are more accurate than the
systems presented in [17] and [18] due to leveraging the speech used
in enrollment for the SV system in order train the SSD and thus more
accurately classify the test speech as human or synthetic.

5. CONCLUSIONS

In this paper, we have presented new results from our research into
the vulnerability of speaker verification (SV) systems to synthetic
speech. A state-of-the-art i-vector SV system was evaluated using
340 speakers from the WSJ corpus and shown to have a 0.00% false
rejection rate (FRR) and 1.74 × 10−5 false acceptance rate (FAR).
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Fig. 4. Detection error tradeoff curve for the synthetic speech de-
tector which uses features extracted from both voiced and unvoiced
phoneme segments.

We evaluated the SV system using synthetic speech derived from
models based on the WSJ corpus and found that 22.9% of the syn-
thetic speech signals (matched to true human claimants) were ac-
cepted. This a significant improvement over prior results with the
GMM-UBM and SVM systems where we found over 81% of syn-
thetic speech was accepted.

We also have proposed a new synthetic speech detector (SSD)
which uses previously-proposed features derived from image anal-
ysis of pitch patterns but extracted on phoneme-level segments and
which leverages the available enrollment speech from the SV sys-
tem. When the proposed SSD is integrated with the i-vector SV
system, the overall system has a false rejection rate (FRR) of 7.35%
and a false acceptance rate (FAR) of 2.34×10−4 which is lower than
previously-reported systems and further reduces the vulnerability of
to synthetic speech.
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