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ABSTRACT

Speaker verification (SV) systems have been shown to be vul-
nerable to imposture using speech synthesizers. In this paper,
we extend previous work in detecting synthetic speech by an-
alyzing words which provide strong discrimination between
human and synthetic speech. The research is applicable to au-
thentication systems based on text-dependent SV where the
user is prompted to speak a certain utterance which can be
chosen by the designer. Our results show that this approach
to synthetic speech detection leads to higher accuracies than
other proposed approaches. Using various corpora to train
and test, our results show 98% accuracy in correctly classify-
ing both human and synthetic speech.

Index Terms— speaker recognition, speech synthesis, se-
curity

1. INTRODUCTION

A speaker verification (SV) system accepts or rejects a
claimed identity based on a voice sample from the speaker.
SV systems have been shown to be vulnerable to speech
synthesis [1], voice conversion [2], and voice mimicking [3]
by accepting an identity claim based on a manipulated or
synthesized speech signal.

In [4], the authors extended their prior research in [5] by
removing the dependency of training the classifier with a syn-
thetic voice matched to each human enrolled in the system.
This was accomplished by using transcoded human speech
during training as a surrogate to the synthetic counterpart.
In [4], the SV and synthetic speech detection (SSD) system
were trained and tested on≈90s and ≈30s speech signals, re-
spectively, whereas the synthetic speech classifier in [5] was
trained on only 10s of voiced speech per speaker. The SSD
in [4] reported 100% accuracy in classifying both human and
synthetic speech when trained on synthetic voices matched to
each human enrolled in the system. The SSD systems had
100% accuracy in classifying human speech and 90% accu-
racy in classifying synthetic speech when trained with the sur-
rogate synthetic speech; the SSD also had an equal error rate
(EER) of 97%. Though these results are improvements to
previously reported accuracies, the SSD features are entirely

phase-based with an assumed knowledge of the phase model
used to create the synthetic speech. The results previously
stated for “coded speech” were generated using a vocoder
with a minimum phase model. For example, when a vocoder
with different phase characteristics is used to create the surro-
gate synthetic speech dataset and therefore train the SSD, the
authors report that the accuracy fell from 90% down to 6.3%
for accurately classifying synthetic speech [4].

In [6], we proposed a classifier based on features extracted
from image analysis of pitch patterns that did not require syn-
thetic models matched to humans in the SV system or any
a priori information regarding speech synthesizers. These
features which include the mean pitch stability, mean pitch
stability range, and jitter were found to provide good discrim-
ination between human and synthetic speech. The classifier
modeled the distribution of synthetic speech feature vectors
as a multivariate Gaussian distribution with a diagonal covari-
ance matrix. A decision threshold was then set by computing
the likelihoods of the training feature vectors and adjusting
for combined highest accuracy. We trained the classifier
based on features extracted from human speech (NIST2002
corpus) and synthetic speech (2008 and 2011 Blizzard Chal-
lenge along with Festival pre-built voices). The classifier
was evaluated using speech from the Switchboard corpus,
Resource Management corpus, and synthetic speech gener-
ated from Festival trained on the Wall Street Journal (WSJ)
corpus. Classification of human, synthetic speech was 98%,
96% accurate, respectively.

The motivation for this work is based on informal listen-
ing tests where it was observed that certain words sound
more synthetic than others regardless of the synthesizer
or vocoder. Although these sounds are likely rooted in
unnatural-modeling of certain phonemes, our study begins by
analyzing common words in our corpora which could serve as
the basis for improved discrimination. The target application
is authentication systems based on text-dependent SV where
the user is prompted to speak a certain utterance which can
be chosen by the designer. In this case, the utterance can
contain many of these discriminating words thus improving
the accuracy of synthetic speech detection. Unlike [6], this
paper 1) leverages sub-utterance information i.e. word seg-
ments of the claimant’s utterance, 2) statistically models each



word’s features using a multivariate Gaussian distribution,
and 3) utilizes a maximum likelihood (ML) classifier with
a weighted mean feature vector based on the Bhattacharyya
distance measure.

This paper is organized as follows. In Section 2, we re-
view the pitch pattern features proposed in [6,7]. In Section 3,
we discuss the analysis of discriminating words and propose
a ML classifier using a Bhattacharyya weighted mean feature
vector. In Section 4, we describe the corpora used in train-
ing and testing and provide classifier results. Future work is
discussed in Section 5. Finally, in Section 6, we conclude the
paper.

2. IMAGE-BASED PITCH PATTERN FEATURES

In this section, we briefly summarize the pitch pattern fea-
tures first proposed in [7] and the image-based pitch pattern
features recently proposed in [6].

2.1. Pitch Pattern

The pitch pattern, φ(t, τ), is calculated by dividing the short-
range autocorrelation function, r(t, τ) by a normalization
function, p(t, τ) which is proportional to the frame energy [7]

φ(t, τ) =
r(t, τ)

p(t, τ)
. (1)

Once the pitch pattern is computed, we segment into a binary
pitch pattern image through the rule

φseg(t, τ) =

{
1, φ(t, τ) ≥ θt
0, φ(t, τ) < θt

(2)

where θt is a threshold set to half the pitch pattern peak value
at time t. In this paper, we compute φ(t, τ) for 2 ≤ τ ≤ 20ms
and set θt = 1/

√
2 for all t. An example pitch pattern image

is shown in Fig. 1.

2.2. Image Analysis of the Pitch Pattern

Extracting features from the pitch pattern is a multi-step pro-
cess and includes 1) silence removal, 2) voiced / unvoiced
segmentation, 3) computation of the pitch pattern, and 4) im-
age analysis. In the fourth step, image processing of the seg-
mented binary pitch pattern is performed in order to extract
the connected components, i.e. black regions in Fig. 1. This
processing includes determining the bounding box and area
of a connected component which are then used to filter out
very small and irregularly-shaped components. The resulting
connected components are then analyzed and used to compute
mean pitch stability, µS ; mean time stability bandwidth, µB ;
and jitter, J which are defined next. The feature vector used
in classification is given by

x = [µS , µR, J ] . (3)

Fig. 1. Segmented binary pitch pattern image from a human
speech signal [6]. The phrase is “The female produces a lit-
ter of two to four young in November.” Pitch stability Sc,
pitch stability range Rc, upper edge τU, and lower edge τL

are denoted.

2.3. Mean Pitch Stability

The pitch stability of connected component, c is the average
value of τ over the connected component

Sc =
1

T

∫
c

[
τU(t) + τL(t)

2

]
dt (4)

where T is the time-support of c and where U and L denote
the upper and lower edges of τ , respectively (see Fig. 1) [6].
The mean pitch stability is calculated as

µS =
1

C

C∑
c=1

Sc (5)

where C is the number of connected components in the
speech signal.

2.4. Mean Pitch Stability Range

The pitch stability range of connected component, c is the
average range of τ over the connected component

Rc =
1

T

∫
c

[
τU(t)− τL(t)

]
dt (6)

(see Fig. 1) [6]. The mean pitch stability range is calculated
as

µR =
1

C

C∑
c=1

Rc. (7)



2.5. Jitter

The pitch pattern jitter, J is computed as follows. The peak
lag for connected component, c at time t is calculated as

φ′c(t) = max
τ

φ(t, τ) (8)

and the variance of the peak lags for connected component, c
is calculated as

σ2
c = var [φ′c(t)] . (9)

The pitch pattern jitter, J is then the average of the peak lag
variances of the connected components [6]

J =
1

C

C∑
c=1

σ2
c . (10)

2.6. Segmental vs. Supra-segmental Features

Vocal tract features, such as those based on mel-frequency
cepstral coefficients (MFCCs), are normally segmental and
based on short-time frames. As shown in [1, 4], MFCCs are
insufficient in discriminating between synthetic and natural
speech. On the other hand, connected components extracted
from the binary pitch pattern image are supra-segmental fea-
tures extracted across many frames. It is our hypothesis that
the co-articulation, or supra-segmental characteristics of the
pitch pattern for synthetic speech, differs from that of human
speech and to a greater extent in certain words. To illustrate
this point, Fig. 2, shows a scatter plot of feature vectors for
the top 20 human and synthetic word models with the largest
separation as calculated by the Bhattacharyya distance mea-
sure.1 It is evident that for human speech, these features lie in
a compact and distinct space as compared to synthetic speech.
Selection of these words is described in the next section.

3. MAXIMUM LIKELIHOOD CLASSIFIER

In [6], the classification of speech as human or synthetic was
based on an averaged connected component feature vector
extracted from the utterance. We propose a ML classifier
based on the log-likelihoods computed from the weighted
mean feature vector extracted at the word-level. During
training, we model the distribution of human and synthetic
speech feature vectors as multivariate Gaussian distributions
with diagonal covariance matrices, N hum(µhum,Σhum) and
N syn(µsyn,Σsyn), respectively. Also during training, each
unique word’s feature vectors (collected from all human or
all synthetic training speech), are individually modeled using
Gaussian distributions, N hum

n (µn,Σn) and N syn
n (µn,Σn)

1The selected words are: “about”, “and”, “be”, “boy”, “but”, “down”,
“if”, “look”, “many”, “more”, “most”, “much”, “my”, “no”, “nothing”, “so”,
“the”, “them”, “time”, and “with.”

Fig. 2. Scatter plot of the mean pitch stability, µS ; mean pitch
stability range, µR; and jitter, J , of 20 word models with
the largest separation as calculated by Bhattacharyya distance
measure. Human speech features lie in a compact and distinct
space as compared to synthetic speech features.

where n denotes the word index. A distance measure (de-
scribed below) is also computed between the human and
synthetic word models. The unique words and distance mea-
sures are then stored in a lookup table indexed by n.

In the test stage, xn is the feature vector extracted from
the nth corresponding word and the weighted mean feature
vector is given by

x =

N∑
n=1

Dnxn (11)

where Dn is a distance measure between N hum
n and N syn

n

and N is the number of words in the test utterance. The log-
likelihood ratio is then given by

Λ = log p(x|N hum)− log p(x|N syn) (12)

and the utterance is determined to be human if

Λ ≥ θ (13)

where θ is the decision threshold.
There are many distance measures that could be used to

calculate Dn in (11) [8], however, we have found the Bhat-
tacharyya distance measure works well. The Bhattacharyya
distance between Gaussian pdfs,Ni(µi,Σi) andNj(µj ,Σj)
is given by [9]

DB(Ni‖Nj) =
1

8
(µj − µi)

>
[

Σi + Σj

2

]−1
(µj − µi)

+
1

2
ln

(
|(Σi + Σj) /2|√
|Σi| |Σj |

)
(14)



where |·| denotes matrix determinant. The first term on the
right side of the equality, measures separation due to the
Gaussian pdfs’ mean vectors, µi and µj , while the second
term measures separation due to the Gaussian pdfs’ covari-
ance matrices, Σi and Σj .

The distance between each human word model and corre-
sponding synthetic word model is calculated during training.
During testing Dn is normalized so that

N∑
n=1

Dn(N hum
n ‖N syn

n ) = 1. (15)

The weights used in the classifier emphasize the feature vec-
tors of the word models that exhibit greater separability be-
tween human and synthetic speech. Conversely, the weights
de-emphasize the feature vectors of word models that are sim-
ilar.

4. EXPERIMENTS AND RESULTS

As part of this research, we collected synthetic speech mate-
rial from a variety of sources as well as directly synthesized
speech. The Festival Speech Synthesis System v2.1 was used
to synthesize the speech signals used during this research.
The WSJ corpus was used to construct 283 different speaker
models using a speaker-adaptive, HMM-based speech syn-
thesis system, H Triple S (HTS). These WSJ HTS speaker
models were used in Festival to generate the synthetic WSJ
speech. Resource Management (RM) voices were obtained
from the ”Voices of the World” (VoW) demonstration system
hosted at The Centre for Speech Technology Research [10].
RM speaker models were generated using a speaker-adaptive
HTS similar to the WSJ speaker models [11].

The human TIMIT corpus [12] has 630 speakers, 296
phonetically-balanced sentences, and a total of 4893 unique
words. Each WSJ voice model was used to synthesize all 296
phonetically-balanced TIMIT sentences resulting in 283 syn-
thetic speakers each uttering 4893 unique words. The human
Switchboard-1 [13] corpus was separated into word segments
according to the 500 word vocabulary defined in [14]. The
synthetic RM corpus is comprised of 157 synthesized voices
each uttering 106 unique words. In this research, there were a
106 common unique words that were spoken by each speaker
of the four corpora. Half of the human speakers and half of
the synthetic speakers were used for training. The other half
of the human and synthetic speakers were used for testing the
classifier. We chose 221 human speakers at random from the
available corpora in order to match the number of synthetic
speakers used in testing; there were no speakers in common
between the training and testing datasets. Speech corpora
usage is summarized in Table 1.

The results presented in [6] used a likelihood classifier
and a different set of training and testing corpora than pre-
sented in this paper. For this paper, the classifier used in [6]

was re-evaluated with the training and testing corpora pre-
sented here (Table 1) and the results showed 96%, 92% clas-
sification accuracy for human, synthetic speech, respectively.
The proposed classifier results in improved classification ac-
curacy of 98%, 98% for human, synthetic speech, respec-
tively.

The results for the proposed ML classifier using the Bhat-
tacharyya weighted mean feature vector are not only better
than those presented in [5] but furthermore, do not require
development of a synthetic voice matched to each human en-
rolled in the system. Furthermore, the results are better than
[4] without assuming knowledge of the phase model used to
create the synthetic speech features or any other prior infor-
mation regarding the synthesizer. In addition, greater clas-
sification accuracy was achieved by the proposed classifier,
compared to recent work in [6], by leveraging sub-utterance
information of the claimant’s speech signal.

Table 1. Speech corpora and number of speakers used for
training and testing the proposed weighted, ML classifier.
Speakers are unique to either training or testing datasets.

Training Testing
(Num. of Spkrs.) (Num. of Spkrs.)

Human TIMIT (315) TIMIT (111)
Switchboard (259) Switchboard (110)

Synthetic WSJ (141) WSJ (142)
RM (78) RM (79)

5. FUTURE WORK

Certain words do provide stronger discrimination between hu-
man and synthetic speech. However, modeling a large num-
ber of words may be impractical. Our future work includes
modeling feature vectors at the phoneme-level where we have
observed large separation distances in the feature vectors for
certain phonemes. It is anticipated that generative and dis-
criminative classifiers operating at the phoneme-level will re-
sults in increased accuracy.

6. CONCLUSIONS

In this paper, we proposed a maximum likelihood classifier
using a Bhattacharyya weighted mean feature vector based
on the words in a speaker’s utterance. We used the synthetic
WSJ speech, synthetic RM voices obtained from [10], human
speech from the TIMIT corpus, and human speech from the
Switchboard-1 corpus. Results show 98% accuracy in cor-
rectly classifying human speech and 98% accuracy in cor-
rectly classifying synthetic speech. The classifier presented
here provided greater discrimination between human and syn-
thetic speech compared to the recent research results.
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