
AN ADAPTIVE PREDICTOR FOR MEDIA PLAYOUT BUFFERING

Phillip DeLeon

New Mexico State University
Klipsch School of Electrical and Computer Engineering

Las Cruces, NM 88003
pdeleon@nmsu.edu

Cormac J. Sreenan

AT&T Labs - Research
Florham Park, NJ 07932

cjs@research.att.com

ABSTRACT

Receiver playout buffers are required to smooth network de-
lay variations for multimedia streams. Playout buffer algo-
rithms such as those commonly used in the Internet, autore-
gressively measure the network delay and variation and ad-
just the buffer delay accordingly, to avoid packets arriving
too late. In this work, we attempt to adjust the buffer de-
lay based on a prediction of the network delay and a similar
measure of variation. The philosophy here is that the use
of an accurate prediction will adjust the buffer delay more
effectively by tracking rapid fluctuations more accurately.
Proper buffer delay can lead to either (or both) a lower total
end-to-end delay for a fixed packet lateness percentage or
fewer late packets for a fixed total end-to-end delay which
are both important metrics for applications such as IP tele-
phony. We present a playout algorithm based on a simple
normalized least-mean-square (NLMS) adaptive predictor
and demonstrate using Internet packet traces that it can yield
reductions in average total end-to-end delays.

1. INTRODUCTION

The Internet and other packet networks are now used to
transport audio and video streams, supporting applications
such as conferencing and telephony. A characteristic of
these networks is that the total delay experienced by each
packet is a function of variable delays due to physical me-
dia access and queuing in routers and switches, in addition
to fixed propagation delays. This variation in network de-
lay, known as jitter, means that the time difference between
transmitting any two packets at the sender is unlikely to be
the same as that observed between their arrival at the re-
ceiver. Multimedia applications generate packets according
to a schedule (e.g. every 40 milliseconds) and ideally the re-
ceiver should reproduce that schedule for accurate playout.
Due to network jitter, if a receiver simply plays out pack-
ets as they arrive, there will be gaps in the playout because
of packets which arrive later than their scheduled playout
time as shown in Figure 1(a). To deal with network jit-

Source

Destination

Time
Play Late PlayPlay

Source

Destination

Time
Play Play PlayPlay

Buffer
Delay

(a)

(b)

Figure 1: Playout problem: (a) packet arrives too late, (b)
solution using a buffer delay.

ter, common practice is to use a per-stream receiver playout
buffer, which attempts to smooth jitter prior to presenting
the data to users as shown in Figure 1(b). A playout buffer
operates by introducing an additional buffer delay and hold-
ing packets until their scheduled playout time. Naturally, if
the playout buffer delay is too small then some packets will
still arrive too late and be discarded, causing gaps. On the
other hand, selecting a large buffer delay results in large
end-to-end delays which are undesirable for interactive ap-
plications such as telephony.

Common algorithms for managing a playout buffer take
a reactive approach, recognizing that network conditions
and hence jitter do change over the lifetime of a stream.
Instead of trying to determine a priori the most suitable
buffer delay, these reactive algorithms compute an average
network delay and use that in determining a current suit-
able buffer delay so that the percentage of late packets is
kept low, typically well under 1%. The most common ap-
proaches use an autoregressive average of the network delay
in the selection of the total end-to-end delay (ted). End-to-
end delay for a packet is equal to the accumulated network
delay plus buffer delay. As an example, [1] provides a con-

cise description of the algorithm used in the NeVoT Internet
audio tool. In this case the delay average upon arrival of
packet i is calculated as

d̂i = αd̂i−1 + (1 − α)ni (1)

and the variation is calculated as

v̂i = αv̂i−1 + (1 − α)|d̂i − ni| (2)

Here d̂i is the one-way network delay estimate, v̂i is an es-
timate of the variation in network delay, ni is the actual net-
work delay for packet i, and α is a weighting factor that
controls the rate of convergence of the algorithm. Given
these values the ted is set using

ted = d̂i + βv̂i (3)

where β is a factor chosen to accommodate changes in net-
work conditions that occur suddenly. In [1], α was chosen to
be 0.998002 and β was chosen to be 4.0. For voice streams
using silence suppression it is common to adjust ted only at
the start of a talk spurt, thereby minimizing the impact on
audio quality of delay changes. In other situations ted can
be adjusted periodically, or based on a threshold difference
between target and current ted.

There have been several other algorithms for playout
buffer operation. Most recently [2] proposed maintaining a
statistical representation of network delays observed during
the stream lifetime. This allows applications to explicitly
trade off future end-to-end delay and late packets. The work
of [3] allows a similar trade off based on a record of Inter-
net network delays for a fixed number of packets, currently
10000. In [4] an algorithm is presented which monitors vari-
ations in receiver buffer lengths to determine playout delay,
rather than trying to estimate network delays.

In this work, we adjust the buffer delay based on a pre-
diction of the network delay and a measure of variation sim-
ilar to that of the reactive approach. The philosophy here is
that the use of an accurate prediction as opposed to an au-
toregressive average will adjust the buffer delay more effec-
tively by tracking rapid fluctuations more accurately. Proper
buffer delay can lead to either (or both) a lower total end-
to-end delay for a fixed packet lateness percentage or fewer
late packets for a fixed total end-to-end delay which are both
important metrics for applications such as IP telephony. In
this paper, we present a playout algorithm based on a sim-
ple normalized least-mean-square (NLMS) adaptive predic-
tor and demonstrate using Internet packet traces that it can
yield reductions in average total end-to-end delays.

The paper is organized as follows. Section 2 describes
how we apply adaptive prediction in the design of a playout
buffer algorithm. Section 3 presents the results of an exper-
imental comparison between our algorithm and the reactive
algorithm described above. Section 4 concludes.

Delay
-+

Σni ei
n̂i

ni 1– hi

Figure 2: Adaptive one-step predictor.

Table 1: NLMS Algorithm fixed parameters.

Parameter Value
h0 [1 0 . . . 0]T

N 18
µ̃ 0.01

2. ALGORITHM

Adaptive filtering algorithms have been successfully applied
in a number of areas such as equalization, echo cancellation,
and prediction. In these applications, an adaptive algorithm
seeks to minimize the expected squared error (cost function)
between the actual data, ni and the estimate, n̂i by adjusting
the coefficients of a finite-impulse response filter, hi used in
cascade or in parallel to the system. Figure 2 illustrates an
adaptive one-step predictor.

One of the simplest adjustment algorithms is the NLMS
algorithm given by

hi+1 = hi +
µ̃

ni−1
Tni−1 + a

ni−1ei (4)

where hi is the N × 1 vector of adaptive filter coefficients,
µ̃ is the step-size, ni−1 is the N × 1 vector containing the
most recent N network delays, T is vector transpose, and ei

is the estimation error given by

ei = ni − n̂i = ni − hT
i ni−1 (5)

where n̂ is the estimate for packet i [5].
In the application of the NLMS adaptive filter to the se-

lection of the ted, we perform the following for each packet:

1. compute the network delay prediction n̂i given N pre-
vious network delays ni−1, . . . , ni−N using the NLMS
algorithm

2. autoregressively calculate the variation as in the reac-
tive algorithm (Eqn. 2)

3. choose the ted as in Eqn. 3 but using the network de-
lay prediction, n̂i instead of d̂i.

In our algorithm we use the parameters listed in Table 1.
We note that the algorithm requires little computation

and memory and is attractive for real-time implementation.

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005

x 10
4

250

260

270

280

290

300

310

320

330

340

i

D
el

ay
 (

m
s)

Averaged Delay (reactive)

Actual Delay Predicted Delay (nlms)

Figure 3: Comparing the reactive and NLMS algorithms.

3. RESULTS

To evaluate the adaptive prediction playout algorithm we
compared it to the aforementioned reactive algorithm us-
ing a set of traffic traces. The traces were recorded for
streams traversing the Internet to AT&T in New Jersey (re-
search.att.com) from three hosts in the US, and one
in the UK. Each trace lasted 10 minutes; traces were cap-
tured from each host at different times of the day. Each
UDP packet carried 20 msec worth of audio and contained
a sequence number and sender timestamp. We recorded the
arrival time and used the differences to estimate network de-
lay variations. The sender/receiver clocks were not synchro-
nized, so these differences include any clock offset as well
as network delay. Thus for our purposes we define network
delay as that quantity in excess of the minimum observed
delay from sender to receiver for a given stream. The latter
is determined by finding the packet with the smallest differ-
ence in send/receive times (we assume negligible clock drift
over the lifetime of each trace).

In the experiments that follow we measure the average
ted in milliseconds, the percentage of actual late packets
(alp) and the average number of packets between late pack-
ets (dist). These are collected across a set of 12 traces and
for both the reactive and NLMS playout algorithms. Runs
are listed according to their source, i.e. Stanford University
(s), Carnegie-Mellon University (m), Rutgers University (r)
and Cambridge University (c). Runs using the NLMS algo-
rithm are shown in boldface. We report on the results of two
experiments.

Figure 3 shows a time-sequence segment comparing the
reactive and NLMS algorithms. Notice that the autoregres-
sive approach of the reactive algorithm produces an average,
whereas NLMS predicts the delay for each packet.

In experiment 1 we compare the two algorithms using
published parameters for reactive on the sample traces mea-

suring both average ted, alp and dist. We observe from
Table 2 that while the NLMS algorithm has an increase in
alp, there is a decrease in ted. We note however, that the alp
for NLMS is still generally under 0.2% which is acceptable
for the intended applications. Finally, we note that the late
packets are on average spread very far apart which is also
desirable for the intended applications.

In experiment 2 we adjust β for the reactive algorithm
permitting more late packets than in experiment 1 while at-
tempting to lower the average ted. We observer from Ta-
ble 3 that when permitting late packets (but still attempting
to stay under 0.5%) the NLMS algorithm in general main-
tains a lower average ted and a lower alp. This suggests
that when we wish to lower the average ted at the expense
of increasing the alp, we can do better by employing the
predictive technique.

4. CONCLUSION

In this paper we have demonstrated the use of an adaptive
network delay predictor in selecting the total end-to-end
delay for smoothing network jitter using a playout buffer.
Compared to conventional reactive techniques which use an
autoregressive average of the network delay, this predictive
technique in general can produce lower average total end-
to-end delays and simultaneously a lower percentage of late
packets when late packets are permitted as compared to re-
active algorithms.

5. REFERENCES

[1] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne,
“Adaptive playout mechanisms for packetized audio ap-
plications in wide-area networks,” in Proceedings of
IEEE Conference on Computer Communications (IN-
FOCOM), pp. 680–688, June 1994.

[2] P. Agrawal, J.-C. Chen, and C. J. Sreenan, “Use of sta-
tistical methods to reduce delays for media playback
buffering,” in Proceedings IEEE Multimedia Comput-
ing and Systems Conference (ICMCS), pp. 259–263,
June 1998.

[3] S. B. Moon, J. Kurose, and D. Towsley, “Packet au-
dio playout delay adjustment: performance bounds and
algorithms,” ACM/Springer-Verlag Multimedia Systems
Journal, vol. 6, pp. 17–28, Jan. 1998.

[4] D. L. Stone and K. Jeffay, “An empirical study of de-
lay jitter management policies,” ACM/Springer-Verlag
Multimedia Systems Journal, vol. 2, pp. 267–279, Jan.
1995.

[5] S. Haykin, Adaptive Filter Theory. Englewood-Cliffs,
N.J.: Prentice-Hall, 3 ed., 1998.

Table 2: Experiment 1: Reactive (α = 0.998002, β = 4.0)
and in boldface NLMS (α = 0.99, β = 6.0).

Run ted alp dist

c1 352.3 0.00 -
c1 344.6 0.04 2322.1
c2 435.5 0.00 -
c2 418.2 0.06 1503.0
c3 758.5 0.00 -
c3 748.8 0.06 1368.0
m1 2503.0 0.00 -
m1 2474.4 0.10 908.6
m2 287.9 0.00 -
m2 278.3 0.14 714.6
m3 2725.6 0.00 -
m3 2702.0 0.08 1245.8
r1 108.8 0.10 781.2
r1 109.9 1.70 53.5
r2 120.7 0.06 1108.6
r2 122.0 1.60 61.2
r3 2508.0 0.31 178.1
r3 2475.1 1.59 59.4
s1 211.3 0.00 -
s1 197.1 0.07 1366.4
s2 283.7 0.00 -
s2 265.8 0.10 963.8
s3 224.2 0.40 222.3
s3 214.3 0.04 2837.8

Table 3: Experiment 2: Reactive (α = 0.998002, β = 2.6)
and in boldface NLMS (α = 0.99, β = 4.0).

Run ted alp dist

c1 331.5 0.44 205.9
c1 326.0 0.19 537.0
c2 410.5 0.26 350.7
c2 398.2 0.20 481.2
c3 739.6 0.10 450.9
c3 730.1 0.15 602.8
m1 2482.1 0.00 -
m1 2452.1 0.36 261.6
m2 260.3 0.63 139.2
m2 254.0 0.47 208.8
m3 2709.8 0.00 -
m3 2682.4 0.32 302.8
r1 105.3 0.28 295.6
r1 105.8 3.10 31.7
r2 116.2 0.21 336.0
r2 116.8 3.28 30.2
r3 2503.5 0.56 109.3
r3 2470.8 2.82 34.6
s1 193.9 1.39 67.9
s1 184.5 0.17 555.2
s2 265.0 0.10 678.3
s2 252.6 0.21 489.6
s3 201.7 3.24 28.5
s3 194.8 0.30 321.1

