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ABSTRACT

It is well known that empirical mode decomposition can suffer from
computational instabilities at the signal boundaries. These “end ef-
fects” cause two problems: 1) sifting termination issues, i.e. conver-
gence and 2) estimation error, i.e. accuracy. In this paper, we propose
to use linear prediction in conjunction with a previous method to ad-
dress end effects, to further mitigate these problems. We compare the
proposed mitigation to the existing method and provide simulations
which demonstrate that the new approach improves intrinsic mode
function estimation accuracy while significantly improving conver-
gence.

Index Terms— Signal analysis, Empirical mode decomposition

1. INTRODUCTION

In [1], Huang proposed the original empirical mode decomposition
(EMD) and sifting algorithms to sequentially determine a set of in-
trinsic mode functions (IMFs). Since the original publication, many
improvements to EMD have been proposed to address various com-
putational issues and other issues related to the signal decomposi-
tion. For example, the ensemble EMD (EEMD) [2] introduced en-
semble averaging in order to address the mode mixing problem via
an additive noise and an averaging of IMF estimates. The complete
EEMD (CEEMD) was proposed to address some of the undesirable
features of EEMD by averaging at the IMF level as each IMF is es-
timated rather than averaging at the conclusion of EEMD [3]. The
improved CEEMD (ICEEMD) [4] was proposed to reduce the noise
present in each IMF estimate and to reduce the occurrence of spu-
rious IMFs as was observed with CEEMD. More recently, we pro-
posed [5] additional improvements to CEEMD which include 1) a
modification to the ensemble averaging which guarantees that the
average IMF is a true IMF [2] and 2) a change from the additive
noise used in ensemble averaging to a complimentary pair of nar-
rowband tones which we term “tone masking.”

In addition to the aforementioned improvements to EMD, im-
provements to the sifting algorithm have also been proposed. In par-
ticular, it is well known that the sifting algorithm may suffer from
computational instabilities at the signal boundaries. These “end ef-
fects” cause two problems: 1) sifting termination issues, i.e. conver-
gence and 2) estimation error, i.e. accuracy. One previous method to
mitigate these problems was proposed by Rato [6,7]. In that method,
extrema were extrapolated in order to improve performance of the
extrapolation in sifting. In this paper, we consider the use of lin-
ear prediction (LP) in conjunction with Rato’s method in order to
mitigate the problem of end effects.

The remainder of this paper is organized as follows. In Section
2, we briefly review EMD and sifting algorithms. We also motivate

the problems related to end effects and review Rato’s method for
mitigation. In Section 3, we describe our proposed approach which
uses LP in conjunction with the previous method. In Section 4, we
provide simulations and results which illustrate the efficacy of the
proposed method. Finally, in Section 5 we provide conclusions.

2. EMPIRICAL MODE DECOMPOSITION

The original EMD and sifting algorithms were proposed by Huang
[1]. The EMD algorithm acts as a “wrapper’” and repeatedly calls the
sifting algorithm, given in Algorithm 1. The purpose of the sifting
algorithm is to iteratively identify and remove the trend from the
real-valued signal, acting as an adaptive high pass filter. This process
repeats to remove additional IMFs from the signal if they exist. The
resulting decomposition is complete and sparse [1,8,9].

The sifting algorithm may be viewed as an iterative way of re-
moving the asymmetry between the upper and lower envelopes in
order to transform the input r(¢) into an IMF [7]. By doing so, low
frequency content is discarded at every sifting iteration, effectively
making the sifting algorithm behave as a high frequency filter or high
frequency component tracker.

Algorithm 1 Sifting Algorithm
1: procedure ¢(t) = SIFT(r(t))

2. while [ |e(t)]* dt # 0 do

3: find all local maxima: u, = r(tp), p=1,2,...
4: find all local minima: I = r(tq), ¢ =1,2,...
5: interpolate: u(t) = CublicSpline({t,, up})

6: interpolate: [(¢) = CublicSpline({tq,lq})

7: e(t) = [u(t) +1(t)]/2.

8: r(t) < r(t) — e(t).

9: end while

10: o(t) =r(t)
11: end procedure

2.1. End Effects

The sifting algorithm relies on the cubic spline interpolator to deter-
mine the envelopes from the extrema. At the signal boundaries, an
interpolation is not possible because the extrema do not extend up
to or beyond the signal boundaries. Thus the interpolation practi-
cally speaking, becomes extrapolation. This causes erratic behavior,
termed end effects, in the envelope estimates near the boundaries and
consequently errors in IMF estimation and convergence issues.

In order to understand the end effects, we refer the reader to
Fig. 1(a) which illustrates a simple example. The figure shows the
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Fig. 1. For a signal segment, the residue signal r(¢) (—), maxima {¢,, up} (®) and minima {tq, {4} (®), upper u(t) (—) and lower I(t) (—)
envelopes, and signal boundaries () at ¢ = 0 (left) and ¢t = N7 (right). Beyond the signal boundaries, we also illustrate (a) artificially-
inserted maxima (w) and minima (w) obtained using Rato’s mitigation method, as well as the subsequently estimated upper envelope (t) (---)

and lower envelope Z(t) (---), and (b) the extension of the residue signal (---) using LP, as well as the maxima {Z,, @i, } (8), minima {Z,, iq}

(=), upper envelope (t) (---), and lower envelope () (---) that are obtained from the extended residue 7(t).

residue signal 7 (t) (—), maxima {{p,up} (®) and minima {¢q,lq}
(®) extrema points', upper u(t) (—) and lower I(t) (—) envelopes,
and signal boundaries () at t = 0 (left) and ¢t = N7 (right). The
envelopes do not extend to the signal boundaries because by defi-
nition, an interpolator estimates a value within the domain of a set
of observations. Thus, the envelopes cannot be interpolated outside
the outermost extrema points. In practice however, the envelopes are
often extrapolated from the outermost extrema points to the signal
boundaries using the cubic spline interpolator. We term this “solu-
tion” as no mitigation. However, this is known to lead to sporadic
behavior such as divergence toward £oo, i.e. end effects because a
good interpolator is not necessarily a good extrapolator.

2.2. Prior Methods for End Effect Mitigation

The goal in mitigating the end effects is to accurately estimate the
upper and lower envelopes right up to the signal boundaries in a
robust way. Several strategies for end effect mitigation have been
proposed. For example, [7, 10, 11] considered symmetrical extrema
extensions and [12] considered using both support vector machines
to predict one maximum and one minimum on each side of the signal
and also considered a mirroring procedure. As Rato [7] noted “sev-
eral attempts [of mitigating the end effects] were made such as rep-
etition or reflection of the signal. The results were not encouraging,
because we were really extrapolating the signal. Instead we decided
to extrapolate the maxima and the minima.” Thus Rato proposed [7]
to insert artificial extrema beyond the signal boundaries in order to
constrain the behavior of the interpolator in the sifting algorithm so
that the cubic spline may be used as an interpolator up to the sig-
nal boundaries. Referring to Fig. 1(a) at the left boundary, suppose
the first maxima is at (7%, M1) and the first minima is at (¢1,m1).
We then extrapolate an artificial maxima at (—¢1, M) (w) and an ar-
tificial minima at (=77, m1) (w). An analogous procedure may be
performed at the right boundary. By including the artificial extrema
in the sets used for interpolation, the upper envelope (t) (---) and

'0n the boundaries, the signal may be viewed as an extrema or not, be-
cause the value of the signal is unknown beyond the boundary. In our imple-
mentations, we choose the latter view.

lower envelope i1 (t) (=--) can now be “interpolated” up to the signal
boundaries. Close inspection of Fig. 1(a) shows a slight deviation be-
tween the envelopes estimated with the artificial extrema [#(t) and
[(t)] and without the artificial extrema [u(t) and I(t)]. Moreover,
even within the outermost extrema the envelopes estimated using
cubic spline interpolation, are affected by artificially-added extrema.
This deviation is a result of changing boundary conditions imposed
by the cubic spline interpolator.

3. LINEAR PREDICTION TO MITIGATE END EFFECTS

Another approach to mitigating the end effects is to artificially ex-
tend the residue signal r(t) beyond the boundaries (as an initializa-
tion step in sifting) then trim the IMF estimate at the boundaries upon
termination of the sifting algorithm. We propose to use a LP model,
popular for signal modelling in speech analysis and other fields, to
extend the residue signal [13]. The auto-regressive (AR) model used
in LP is then utilized as both a forward and backward predictor in
order to extend the residue beyond the signal boundaries resulting in
an extended residue signal
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where P is the order of the AR model, a, are the forward linear
prediction coefficients (LPCs) obtained using Burg’s algorithm, and
L is the length of the extension in samples for each side. We note that
P and L are design parameters and must be appropriately chosen.
As an illustration of using LP, consider Fig. 1(b) which shows
the residue signal r(t) (—) as well as the maxima {¢p, up} (®) and
minima {¢q, lq }, upper envelope u(t) (—), and lower envelope ()
(—) that may be obtained from the residue signal r(¢). Also shown
are the extension of the residue signal (---) as well as the maxima
{tp, lip} (w), minima {Z,,l,} (=), upper envelope @(t) (---), and



lower envelope I(¢) (---) that are obtained from the extended residue
7(t). Again, close inspection of Fig. 1(b) shows a slight deviation
between the envelope estimates even within the signal due to the
boundary conditions in the cubic spline interpolator.

Mitigation using LP requires an appropriate choice for the ex-
trapolation length parameter L. If the parameter L is chosen to be
too small, the extended resuide may not display any additional ex-
trema. We note that Rato’s method and the above LP are compli-
mentary and can be used in conjunction. Thus, as precaution for
the event that L is chosen too small, we propose the use of LP in
conjuction with Rato’s method as follows. Prior to the while loop in
Algorithm 1, compute the LPCs a,, using 7(¢), compute the left and
right residue extensions using the forward and backward predictors
as in (1), and replace r(t) with 7(¢). After obtaining extrema from
7(t), insert artificial extrema ar the extended boundaries of 7(t) us-
ing Rato’s mitigation and compute the cubic spline between the out-
ermost extrema, i.e. —LTs < ¢ < (N + L)T,. Finally, prior to
termination of the sifting algorithm the IMF estimate is trimmed off
outside the interval 0 < ¢t < NTs. The pseudocode for the sifting
algorithm with the proposed end effect mitigation is given in Algo-
rithm 2 where we also replace the original termination condition
with the average power over the interval 0 < ¢ < N7y below a
threshold €.

Algorithm 2 Sifting Algorithm with Proposed Mitigation
1: procedure (t) = SIFT(r(t), L, P)
2: compute 7(t) via Equation (1)

NTs 18(8)|?dt > e do

B 1
while ~T, Jo

3
4: find all local maxima: @, = #({p), p = 1,2,...
5: find all local minima: I, = #(¢,), ¢ = 1,2, ...
6: insert artificial extrema (per Rato)

7 interpolate: @(t) = CublicSpline({t,, @i, })

8: interpolate: [(t) = CublicSpline({i,,l,})

9: é(t) = [a(t) +1(t)]/2

10: 7(t) « 7(t) — é(t).

11: end while

12: pt) =7(t),0<t < NT;

13: end procedure

4. SIMULATIONS AND RESULTS

As described earlier, the presence of end effects results in two prob-
lems: 1) IMF estimation error, i.e. accuracy and 2) sifting termina-
tion issues, i.e. convergence. We illustrate the efficacy of the pro-
posed method for end effect mitigation with two simulations.

4.1. Simulation 1: Accuracy

In the first simulation, following [16] we constructed a signal con-
sisting of two components x(t) = so(t) + s1(t) with so(t) =
cos(27t + ¢o) and s1(t) = acos(2mft + ¢1) where ¢o, 1 €
U(—m, 7] and a and f are the amplitude and frequency ratios. Again
following [16], we define an error surface as a function of log am-
plitude ratio —2 < log;,(a) < 2 and of frequency ratio0 < f <1

as
N%n:\%$@&mj i<1 @
w0 Yt

2Various stopping criteria have been reported in the literature [7, 14, 15].

with a minimum value of 0 and a maximum value of 1, and the mean
error as ~
J= me?n [J(a, f)] 3)

where me?n[~] denotes the average over a and f.
a,

In the first simulation, we use sampling frequency f, = 500, a
signal duration of 10 seconds, extrapolation length L = 2f,, order
P = 200, number of trials I = 100. We report performance in
terms of IMF estimation accuracy by defining the expected mean
error surface E[J(a, f)] and the expected mean error E[J] across
the I trials.
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Fig. 2. The expected error surface E[J (a, f)] when using (a) no
mitigation, (b) Rato’s mitigation, and (c) the proposed mitigation
(LP+Rato’s). Additionally, the theoretical bifurcation curves af? =
1(—),af =1(---),and af sin(37f/2) = 1 (-) derived in [16] are
overlaid.



Fig. 2(a) shows the expected error surface E[J(a, f)] with no
mitigation of end effects. We note that the figure does not exactly
match Figure 3 in the published reference [16] because the authors
removed the end effects from the analysis, i.e. the first and last quar-
ters of the signal were removed prior to error computation. Fig. 2(b)
shows the expected mean error surface E[.J (a, f)] when using Rato’s
method to mitigate the end effects which shifts the transition occur-
ring at approximately f = 0.37 to f = 0.67 (back in agreement
with [16]) and removes the area of high error near log,,(a) = 0 and
f = 0.3. We also note that the transition from low to high error
aligns closer to the theoretical curves af = 1 (---) when f > 1/3
and afsin(3wf/2) = 1 () when f < 1/3. Fig. 2(c) shows a
smoother expected mean error surface E[J(a, f)] when using the
proposed method (e.g. near f = 0.67) which implies a more con-
sistent performance. Additionally, the proposed method lowers the
error between the theoretical bounds so that the transition from low
to high error aligns closer to the theoretical curve a f 2 =1().
Finally, Table 1 gives the expected mean errors E[J] for the vari-
ous methods including no mitigation as a function of the number of
sifting iterations. The proposed method has a lower expected mean
error regardless of the number of sifting iterations.

Number of Sifting Iterations

1 10 100
No Mitigation 0.64 0.62 0.62
Rato’s Method 0.52 0.49 0.51
Proposed Method 0.46 0.40 0.37

Table 1. The expected mean error E[.J] for Simulation 2 over 100 tri-
als for various number of sifting iterations. The proposed method has
the lowest expected mean error regardless of the number of sifting
iterations. Rato’s method shows evidence of instability by increasing
error as the sifting iterations increaces from 10 to 100.

4.2. Simulation 2: Convergence

In the second simulation, we construct a signal consisting of two
components x(t) = so(t) + s1(t). The first component so(t) is
a Gaussian AM, sinusoidal FM signal and the second component
s1(t) is a sinusoidal AM signal. Mathematically these components
are both described as

sk(t) = Re {ak(t)ej (27 fi+ [T o M (7) A+ 6] } )

2000
fo = 40, mo(t) = 25sin(4nt + ¢m), and ¢o, ¢ drawn from
U(—m, ] and second component parameters a1 (t) = & sin(20¢) +
0.7, f1 = 250, m1(t) = 0, and ¢1 drawn from U (—, 7].

Our convergence metric is the average power in the mean of the
envelopes over the interval 0 < ¢t < N7

1 NTs 5

in decibels (dB) as a function of the number of sifting iterations.
Fig. 3 summarizes the results of 5000 trials with a sampling rate
fs = T% = 16000 where a one half second signal segment was con-
sidered. For the proposed method, we choose extrapolation length
L = 200 and order P = 200. First, the — shows the trial with
the worst convergence and demonstrates a case where instability oc-
curred. We note that with no mitigation, although the instability

with first component parameters ao () = 0.25+exp [f 1 (5%20) 2]

&)

may be severe, additional iterations allow for convergence whereas
with only Rato’s method, additional iterations may not be beneficial.
Finally, with the proposed method, the instability is small and ad-
ditional iterations allow for convergence. Second, the mm shows the
range of the convergence metric across the trials as a function of the
number of iterations. We note that with no mitigation the range is
about 100 dB, whereas with only Rato’s method it is about 75 dB,
and with the proposed method it is only about 50 dB. A smaller range
of C' implies more consistent convergence performance. Third, the
== shows the mean dB value of C' across the trials as a function of the
number of iterations. We note that the no mitigation case does only
slightly worse then the proposed method, while Rato’s method on
average performs worse than the no mitigation case, in terms of con-
vergence. Interpretation of the results from Experiment 1 implies,
that use of Rato’s method for mitigation on average takes more com-
putation time (requires more iterations) than either no mitigation or
the proposed mitigation, when the termination condition is based on
average power of the mean of the envelope estimates.
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Fig. 3. For 5000 trials of the convergence metric C' in dB as a func-
tion of iteration, the mean value (==) and the range (mm) for (a) no
mitigation, (b) Rato’s mitigation only, (c) the proposed mitigation
(LP+Rato’s). The trial with the wost convergence (—) is also shown,
note convergence instability.

5. CONCLUSION

In this paper, we proposed to use linear prediction in conjunction
with a previously proposed extrema extrapolation to mitigate end
effect problems in EMD. Using two simulations, we illustrate the
efficacy of the proposed method. In the first simulation, we show
that the expected mean error is reduced and in the second, both the
convergence mean and worst case trial are smaller and convergence
is more robust. The proposed method is anticipated to have the most
impact in cases where the area of interest within the signal extends
up to the signal boundary.
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