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Bayesian Classification of Falls Risk

Matthew Martinez®P-* Phillip L. De Leon®, David Keeley®

%Sandia National Laboratories, Albuquerque, NM 87185, USA
bKlipsch School of Electrical and Computer Engineering, New Mezico State University, Las Cruces, NM 88003, USA
¢Department of Kinesiology and Dance, New Mexico State University, Las Cruces, NM 88008, USA

Abstract

Background: Prior research in falls risk prediction often relies on qualitative and/or clinical methods. There are two
challenges with these methods. First, qualitative methods typically use falls history to determine falls risk. Second,
clinical methods do not quantify the uncertainty in the classification decision. In this paper, we propose using Bayesian
classification to predict falls risk using vectors of gait variables shown to contribute to falls risk.

Research Questions: 1) Using a vector of risk ratios for specific gait variables shown to contribute to falls risk, how can
older adults be classified as low or high falls risk? and 2) how can the uncertainty in the classifier decision be quantified
when using a vector of gait variables?

Methods: Using a pressure sensitive walkway, biomechanical measurements of gait were collected from 854 adults over
the age of 65. In our method, we first determine low and high falls risk labels for vectors of risk ratios using the k-means
algorithm. Next, the posterior probability of low or high falls risk class membership is obtained from a two component
Gaussian Mixture Model (GMM) of gait vectors, which enables risk assessment directly from the underlying biomechan-
ics. We classify the gait vectors using a threshold based on Youden’s J statistic.

Results: Through a Monte Carlo simulation and an analysis of the receiver operating characteristic (ROC), we demon-
strate that our Bayesian classifier, when compared to the k-means falls risk labels, achieves an accuracy greater than
96% at predicting low or high falls risk.

Significance: Our analysis indicates that our approach based on a Bayesian framework and an individual’s underlying
biomechanics can predict falls risk while quantifying uncertainty in the classification decision.
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first is through the use of questionnaires which assess,
for example, an individual’s history of falling, medication
usage, and home environment all of which may increase

20 an individual’s risk [I]. The second method uses clini-
cal mobility-based assessments to evaluate an individual’s
gait, strength, and balance which have also been shown to

be indicators of falls risk. These assessments include but
are not limited to the Timed Up and Go test [6], the 30-

s second Chair Stand [7], and the 4-Stage Balance Test [g].
There are two challenges with these methods for clas-
sifying falls risk. First, the questionnaires can be error
prone due to their qualitative nature [4]. Additionally,
they often use a threshold to place individuals into one of

w two categories, faller or non-faller. However, these labels
are only indicative of the individual’s falls history, fail to
capture their level of risk [1], and do not account for biome-
chanical risk factors associated with a prospective fall. It
has also been shown that mobility-based measures of falls
risk are uncorrelated with falls risk assessments that use
falls history, home environment, and medication to assess

1. Introduction

Falls prevention efforts for older adults have become
increasingly important and are now a significant health
research effort. Unintentional falls are a leading cause of
injury to those over 65 years of age and have significant so-
cietal and economic impacts [I]. One of the current trends
in health informatics is the use of machine learning to pre-
dict adverse outcomes [2 3]. Prior research has shown that
machine learning can be used to analyze gait and classify
older adults as a faller or non-faller, where a faller has a
past history of falling [4] [5].

In supervised learning, a binary classifier maps an in-
put vector to one of two labels, e.g. faller vs. non-faller.
Labels for falls risk prediction are typically inferred from
empirical data including the use of expert domain knowl-
edge and are usually obtained using two methods. The
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falls risk [I]. The second issue is that although clinical as-
sessments have been shown to be successful at identifying
older adults at risk of falling or those who have fallen in the

September 5, 2018



40

45

50

55

60

65

70

75

80

85

90

past [9, 10], to maintain simplicity they classify individu-
als as low or high falls risk using threshold-based meth-
ods. Additionally, they do not quantify the uncertainty in
classifying an individual as either low or high falls risk or
provide a probability of an adverse outcome [11].

In this paper, we propose using gait variables mea-
sured with a pressure sensitive walkway to classify older
adults as low and high falls risk using a Bayesian frame-io0
work. We first determine low and high falls risk labels
using vectors of the relative increase in risk ratios using
the k-means algorithm. These risk ratios quantify how an
individual’s falls risk increases with changes in each gait
variable. Next, parameters of a two component Gaussianios
Mixture Model (GMM) [12] of gait vectors are estimated
where each component models the low and high falls risk
classes and posterior probabilities for low and high falls
risk class membership are then computed. Unlike classi-
fiers that identify individuals as faller or non-faller, theuo
proposed Bayesian framework quantifies the uncertainty
that an individual is classified as high falls risk. Using a
Monte Carlo simulation and Receiver Operating Charac-
teristic (ROC) curve analysis, we determine the decision
threshold which maximizes Youden’s J statistic [13] forus
the classifier.

The contributions of this paper are as follows.

1. Although prior research [14] [I5, [I6] has quantified
how changes in specific gait variables increase falls
risk, no definitive method is provided to identify in-"
dividuals as low or high falls risk. We demonstrate
that by using k-means clustering of vectors whose el-
ements are risk ratio increases, defined in Section (3.2
we can effectively cluster the vectors into low and
high falls risk classes.

2. Prior research [4, 5] and clinical methods, have been
shown to be successful at classifying individuals who
have fallen in the past or are at risk of falling. How-
ever, these methods do not provide an uncertainty
associated with the classification. By using a Bayesian
framework, we demonstrate that we can classify indi-
viduals as low and high falls risk while also providing
uncertainty of the classifier’s decision.
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This paper is organized as follows. In Section [2] we
provide a review of factors associated with falls risk. We
then discuss our data set and a method for hard label
assignment based on risk ratios in Section 3] In Section [4]
we describe the use of a GMM in data modeling and the
Bayesian framework. In Section [5, we give performance
results of our classifier using the risk ratio labels and we
provide conclusions in Section [6]

2. Falls Risk

Risk factors associated with falls in older adults are
both extrinsic and intrinsic. Extrinsic factors include med-
ications, home environment, and footwear. Medications

associated with an increased risk of falls include psychotrop-
ics, diabetes medication, non-steroidal anti-inflammatory
drugs, cardiovascular medications, and anti-epileptics [17}
1]. Home environment factors include poor lighting and
loose rugs, and an increase in falls risk due to footwear is
attributed to the use of slippers and walking barefoot in
the home [I7]. Intrinsic risk factors include demographics,
bodily system functioning, and disease-associated symp-
toms. Demographics associated with an increase falls risk
include age, sex, and race: adults over the age of 85 fall at
rate of 4x that of adults between the ages of 65 and 74;
women are 58% more likely than men to suffer from a non-
fatal fall, whereas, men are 46% more likely to experience
a fatal fall; and White women are 2.5x more likely to expe-
rience a fatal fall and have a higher incidence of fall related
hip fractures than African American women [I7]. Falls risk
associated with system decline include gait and balance
disorders, a decrease in strength, a decline in vision, and a
decline in cognitive function [I}, I7]. Additionally, disease-
associated symptoms such as dizziness and vertigo, car-
diovascular disease, dementia, and depression have been
shown to contribute to an increased falls risk [14], 15} [17].

Although the above risk factors contribute to an in-
creased risk of falling, gait and balance disorders are among
the strongest indicators of falls risk [I7]. This is a result
of age-related degradation in the gait pattern, which is
stiffer and less coordinated [I7]. As a result of age-related
physiological decline, older adults are less capable of self-
correcting after experiencing a slip or trip. This is due
to a decrease in muscle strength and tone, a decrease in
step height and length, and reduced body orienting re-
flexes [I7]. Additionally, older adults are unable to step
rapidly after a loss of balance resulting in several erratic
steps [17].

Five gait variables, identified in previous studies [14]
15l [16], have been shown to contribute to an increase in
the risk of falls. These variables are gait speed, cadence,
stride length, time spent in swing phase as a percentage of
the gait cycle, and time spent in double support as a per-
centage of gait cycle. Using Principle Component Analysis
(PCA) with varimax rotation, the authors in [I5] group
these five variables into two factors: pace (gait speed, ca-
dence, and stride length) and rhythm (time spent in swing
phase and double support as a percentage of the gait cy-
cle). As well as identifying the components of gait re-
sponsible for increasing the risk of falls, the authors also
attributed a risk ratio to each variable, where the risk ratio
is reported as a per unit change from the median reported
value. For all variables except double-support, the unit
change is reported as a decrease. Table |l| summarizes the
median value, unit change, and risk ratio for each variable.
For each variable x in Table [1} the associated increase in
risk is calculated as

x — median

Ak = * (risk ratio — 1.0).

(1)

unit change

These risk ratios quantify how an individual’s falls risk in-
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Table 1: Summary of median value, unit change, and risk ratio for
each variable where the unit change for all variables except double-
support are reported as decreases.

Gait Median ~ Unit Risk
Variable Change Ratio

Gait Speed (cm/s) 95.1 —-10 1.078
Cadence (steps/min)  101.8 -10 1.085
Stride Length (cm) 112.5 —10 1.095
Swing phase (%) 36.6 -10 1.503
Double-support (%) 26.6 10 1.207

Table 2: Anthropometrics and disease domain information for study
participants.

Variable Female (n=601) Male (n=253
Age, v (std dev) 78.9 (7. 78.5 (7.8
Weight, kg (std dev) 70.8 (16.5 85.3 (17.4

)
9)
)
237 (38.4)
323 (53.7)
)
)
)

(
( 91
(
183 (30.4
(
(

Cardiovascular (%)
Arthritis (%)
Neurologic (%)
Metabolic (%)

More-Than-One (%)

213 (354
248 (41.3

creases with changes in each gait variable. However, these,,,
risk ratios do not provide an overall measure of risk or
quantify the uncertainty of being at high risk for falling.
They are instead a measure of the increase or decrease in
risk [18].

3. Gait Data and Risk Labeling 175

3.1. Gait Data

In partnership with the Electronic Caregiver® (ECG)
Company, biomechanical measurements of gait were col-
lected using a TekScan® Walkway System, which uti-is
lizes piezoresistive sensors to measure plantar pressure and
force. The measurements include gait, kinetic, and timing
variables. The gait variables include step and gait time,
distance, velocity, and cadence. The sensing dimensions
are 85.8 inches x 14.5 inches and sufficient for partici-ss
pants to take approximately 3-4 steps. Walkway data was
processed by calculating a mean value over the gait cycles
for each of the gait variables in Table [1} swing time and
double support time were converted to a percentage of the
gait cycle. 190

Gait data was collected from 854 adults over the age of
65 from 50 sites in the Southwestern and Southern U.S. by
ECG Co. Participants were recruited on site, were selected
based on age, cognitive ability, ability to read and under-
stand the liability waiver, and ability to ambulate for 30s1es
with or without an assistive walking device. All partic-
ipants completed a liability waiver informing them of all
protocols, potential risks and benefits, rights as volunteers,
and right to withdraw consent. The use of the walkway
data for secondary analysis was approved by New Mexico
State University Internal Review Board under reference
number 15405.

The demographic composition of participants is as fol-™"
lows: 82.8% White (non-Hispanic), 5.6% African-American,
3.4% Hispanic, 1.1% Asian, 0.4% Native American, 1.2%
other, and 5.6% did not provide information regarding eth-
nicity. Compared to U.S. Census Bureau data, all ethnic-
ities are under-represented with exception of Whites [19].
In addition, the proportion of female participants in our
data set (70.4%) is higher than the U.S. population [19].
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However, we consider both sex-dependent and sex-independent

models so consequences (if any) of this imbalance may be

accounted for. Finally, the anthropometric and health/medical

history data in Table [2] indicates that our data set is con-
sidered healthier than the overall U.S. population over the
age of 65 [20, 211, 22, 23].

3.2. Risk Ratio Based Labeling

While prior research [I4] 15, 16] has quantified changes
in gait variables to increases in falls risk (Table , there is
no overall definitive measure of risk using these variables.
We determine risk ratio based hard labels, which are used
to evaluate our Bayesian classifier, as follows. For each
participant, we construct a 5-D vector composed of the
associated increase in risk for each variable using . If
the increased risk for the variable is less than zero, we set
that element to zero, indicating no increase in risk. We
refer to this vector as the “risk vector”. Next, the risk
vectors are clustered into two classes using k-means [12]
which is illustrated in Figure [la) where the risk vectors
are projected onto 2-D spac In addition, we color the
markers by the magnitude of the risk vector in order to in-
dicate how far from “no increase in risk” the participant is
as illustrated in Figure b). Thus as risk vectors increase
in length, falls risk increases. Comparing Figures|[Ija) with
(b), we see that k-means effectively clusters the risk vectors
into low falls risk (blue) and high falls risk (red) groups.
With this approach 511 (59.8%), 343 (40.2%) of 854 par-
ticipants were labeled as low falls risk and high falls risk,
respectively.

4. Bayesian Classification

4.1. Gaussian Mizture Modeling

Using the expectation-maximization algorithm, we es-
timated parameters for a two component GMM where the
components model low and high falls risk classes using vec-
tors composed of the five gait variables in Table[[]obtained
from walkway data. We refer to this vector, x, as the “gait
vector” and note that it is fundamentally different than
the risk vector described in Section [3 and is directly con-
structed from biomechanical data. This is an important

IDimensionality reduction, from 5-D to 2-D, is accomplished us-
ing PCA [12].
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Figure 1: Scatter plots of 5-D vectors of associated increase in risk
for variables listed in Table using ; risk vectors are projected to
2-D for illustration purposes. (a) The 5-D risk vectors are clustered
into two classes using k-means and (b) colored by the magnitude of
the normalized risk vector in order to indicate overall risk. The k-
means algorithm clusters the data into low falls risk (blue) and high
falls risk (red) classes. With this method, we have 511 participants
labeled as low falls risk and 343 labeled as high falls risk. These hard

labels are used to evaluate the proposed Bayesian classifier. 220

point because it enables risk assessment directly from un-
derlying biomechanics. We consider both sex-independent
and sex-dependent GMMs, the latter is motivated by well-,,
known sex difference across gait variables [24]. The use of
diagonal covariance matrices in the GMM, despite correla-
tions in the gait variables [I5], led to more accurate classi-
fication of the gait vectors from the posterior probabilities
as described below. 230

For the vector comprised of the median values (lowest
risk) in Table 1, from Bayes’ theorem we computed the
posterior probability or responsibility of each component,
k as

p(x|k)p(k)
p(x)
N (x| g, Bie)

2
Zﬁj/\/(x“l’ja E])
j=1

pklx) =

0 0.2 0.4 0.6 0.8 1
(b) Sex-dependent model

Figure 2: Scatter plots of the 5-D gait vectors consisting of the gait
variables in Table [l| projected onto 2-D space. The markers are
shaded according to the posterior probability that the gait vector
will be assigned membership to the high falls risk class, Ca.

where £k = 1 or 2, p(x|k) is the likelihood, p(k) is the
prior, and {m;, p;,3;} are the distributional parameters
(weight, mean vector, and covariance matrix) of the jth
component. Using the vector of median values (low risk),
we associate the component with the higher of the two
responsibilities as the low falls risk class, C7; the other
component is therefore associated with the high falls risk
class, Cy. Figure [2 shows the 5-D gait vectors projected
onto 2-D space for the sex-independent and sex-dependent
models. The markers are shaded according to the poste-
rior probability, i.e. uncertainty that a gait vector will be
classified as high falls risk.

We use the responsibilities from the GMM to con-
struct a Bayesian classifier which predicts the probability
that a gait vector belongs to the kth class, p(Ck|x). The
classification decision is then made according to the rule

Cl,
027

p(Cilx) > 6
otherwise

(3)

where 6 is the decision threshold.
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Table 3: Classifier performance using a J statistic threshold for the
sex-independent and sex-dependent models including AUROC, ac-
curacy (ACC), specificity (SPEC), and sensitivity (SENS) for the
given decision threshold, #. Any improvements in performance from
sex-dependent modeling are minor.

Model AUROC 0 ACC SPEC SENS
Sex-indep 99.1% 0461 96.5% 95.4% 98.1%
Female 99.1% 0.464 96.8% 95.3% 98.7%
Male 99.1%  0.601 95.5% 95.6% 95.4%

4.2. Assessment Methodology

We evaluate the Bayesian classifier by applying a thresh-
old to the posterior probabilities from the GMMs and com-
pare the classification decision to the risk ratio based labels
in Section We compute this threshold by maximizing
Youden’s J statistic [I3]

J = sensitivity + specificity — 1 (4)

where the sensitivity and specificity are obtained from the
ROC curve. We assess the Bayesian classifier using a
Monte Carlo simulation (100 trials) where for each iter-
ation, 80% of the gait vectors are used for estimating the
parameters of the GMM and the J statistic threshold. The
remaining 20% of the gait vectors are used to validate the
model. Each gait vector in the training set is selected using
the risk vectors in a stratified resampling technique [13].

5. Results and Discussion

The results from this evaluation are provided in Ta-
ble[3] For the sex-dependent modeling, we demonstrate an
area under the receiver operating characteristic (AUROC)
curve of 99.1% with an accuracy, specificity, and sensitivity

of 96.8%/95.5%, 95.3%/95.6%, and 98.7%/95.4%, respec-

tively for female/male models. For the sex-independent
modeling we demonstrate an AUROC curve of 99.1% with
an accuracy, specificity, and sensitivity of 96.5%, 95.4%,
and 98.1%, respectively.

After model evaluation we trained the GMMs using

all available data and set the .J statistic threshold based’

on an average threshold resulting from the Monte Carlo
trials. The final sex-independent model achieved an ac-
curacy of 96.4% and the sex-dependent models achieved
an accuracy of 97.0%, 96.8% for the female, male model
respectively. Any improvements in performance from sex-
dependent modeling are minor thus there appears to be
no benefit to sex-dependent modeling.

Figure [3]shows the 5-D gait vectors projected onto 2-D
space for the sex-independent and sex-dependent models.

Classification of participants as low falls risk (blue) and”™

high falls risk (red) for each gait vector is determined using
the average J statistic threshold.

Perfect agreement between the hard labels from the
k-means model and the Bayesian classifier would achieve
an AUROC of 100% [I3]. Thus the AUROC values in

(] low-risk ° o
(] high-risk ® °
[}
(]
(a) Sex-independent model
o
@ low-risk ) o
(] high-risk ° °
[}
[}

(b) Sex-dependent model

Figure 3: Scatter plots of the 5-D gait vectors consisting of the gait
variables in Tablemprojected onto 2-D space for the sex-independent
and sex-dependent models. The markers are assigned membership
to the low falls risk (blue) and high falls risk (red) classes using
where the posterior probability threshold is given in Table Clas-
sification results from the two models are similar with the exception
of points near the transition from low to high risk.

Table |3] indicate a high agreement between the risk ratio
based hard labels and the GMM based soft labels. Ad-
ditionally, the AUROC results indicate that the Bayesian
classifier effectively classifies the gait vectors according to
risk level while the posterior probability provides a mea-
sure of uncertainty.

There are at least two limitations of this study. First,
our data was collected in a laboratory like setting. Prior
research has shown that spatial-temporal gait characteris-
tics are dependent on setting [25] and variability is higher
in free-living environments than in a laboratory [26]. Sec-
ond, self-reported data was used to assess the health of the
participants, which has been shown to influence a partic-
ipant’s psychological, cultural status, mood, false and/or
forgotten memories, and the social desirability bias [27].
Mitigating strategies incorporated into data collection in-
cluded the use of anonymity, biased statement avoidance,
and the request for truthful responses.

6. Conclusion

In this paper, we have proposed a method for classify-
ing older adults as low or high falls risk using a Bayesian
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framework where the posterior probabilities are obtained
from a two component GMM. Using gait data collected
from a pressure sensitive walkway, we estimated parame-
ters for both sex-independent and sex-dependent GMMs.,,,
The advantages of this approach is that low or high falls
risk classification is based on an individual’s underlying
biomechanics while the Bayesian framework provides a
measure of uncertainty of falls risk classification. 350
The proposed method demonstrated good agreement
with hard labels based on risk ratios through a ROC curve
analysis and a classification accuracy greater than 96%
was achieved. The proposed Bayesian classifier could besss
used to assist clinicians with identifying older adults’ falls
risk using gait data. This in turn could improve a clini-
cians’ recommendations for intervention for those at risk
of falling. 360
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