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ABSTRACT

In large population speaker identification (SI) systems, like-
lihood computations between an unknown speaker’s feature
set and the registered speaker models can be very time-
consuming and impose a bottleneck. For applications requir-
ing fast SI, this is a problem. In prior work, we proposed the
use of clusters of speaker models so that during the test stage,
only a small proportion of speaker models in selected clusters
are used in the likelihood computations resulting in a speed-
up of 2x without loss in accuracy. In this paper, we improve
the method by incorporating log-likelihoods into the initial
clustering as well as cluster selection. The new method al-
lows for fewer clusters to be searched and thus higher speed-
up factors while still maintaining acceptable accuracy levels.

1. INTRODUCTION

The objective of speaker identification (SI) is to determine
which voice sample from a set of known voice samples best
matches the characteristics of an unknown input voice sam-
ple [1]. SI is a two-stage procedure consisting of training
and testing. In the training stage speaker-dependent feature
vectors are extracted from a training speech signal and a
speaker model, Ay is built for each speaker’s feature set. Nor-
mally, SI systems use the mel-frequency cepstral coefficients
(MFCCs) as the L x 1 feature vector and a Gaussian Mixture
Model (GMM) of the feature set for the speaker model. The
GMM is parameterized by the set {w;, 1t;,X;} where w; are
the weights, y; are the mean vectors, and X; are the covari-
ance matrices of the W component densities of the GMM.
In the SI testing stage M’ feature vectors, x> are extracted
from a test signal (speaker unknown), scored against all S
speaker models using a log-likelihood calculation, and the
most likely speaker identity, § decided according to
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In assessing an SI system we measure identification accu-
racy as the number of correct identification tests divided by
the total number of tests. For many years now, GMM-based
systems have been shown to be very successful in accurately
identifying speakers from a large population [1], [2].

In speaker verification (SV), the objective is to verify an
identity claim. Although the SV training stage is identical
to that for SI, the test stage differs. In the SV test stage, for
the given test feature set a likelihood ratio is formed from the
claimant model and that of a background model [3]. If the
likelihood ratio is greater than a threshold value, the claim
is accepted otherwise it is rejected. In SV, MAP-adapted

speaker models from a universal background model (UBM)
with likelihood normalization are normally used [4].

In this paper, we consider the problem of slow speaker
identification for large population systems. In such SI sys-
tems (and SV systems as well), the log-likelihood computa-
tions required in (1) have been recognized as the bottleneck
in terms of time complexity [2], [5]. Although accuracy is
always the first consideration, fast identification is also an
important factor in many applications such as speaker index-
ing and forensic intelligence [6], [7].

Among the earliest proposed methods to address the slow
SI/SV problem were pre-quantization (PQ) and pruning. In
PQ, the test feature set is first compressed through subsam-
pling (or another method) before likelihood computations
[8]. PQ factors as high as 20 have been used without af-
fecting SV accuracy. Application of PQ in order to speed-
up SI has been investigated in [2] and results in a further
real-time speed-up factor of as high as 5x with no loss in
identification accuracy using the TIMIT corpus. In prun-
ing [9], a small portion of the test feature set is compared
against all speaker models. Those speaker models with the
worst scores are pruned out of the search space. In subse-
quent iterations, other portions of the test feature set are used
and speaker models are scored and pruned until only a single
speaker model remains resulting in an identification. Using
the TIMIT corpus, a speed-up factor of 2x has been reported
with pruning [2]. Variants of PQ and pruning as well as com-
binations of the methods have been extensively evaluated in
(2].

In [10], a hierarchical speaker identification (HSI) is pro-
posed that uses speaker clustering which, for HSI purposes,
refers to the task of grouping together feature sets from dif-
ferent speakers with similar acoustic data and modeling the
superset, i.e. speaker cluster GMM. (In most other papers,
speaker clustering refers to the task of grouping together un-
known speech utterances based on a speaker’s voice [11].) In
HSI, a non-Euclidean distance measure between an individ-
ual speaker’s GMM and the cluster GMMs is used to assign
speakers to a cluster. Feature sets for intra-cluster speakers
are then re-combined, cluster GMMs are re-built, distance
measures are recalculated, and speakers are reassigned to
“closer” clusters. The procedure iterates using the ISODATA
algorithm until speakers have been assigned to an appropri-
ate cluster. During this iterative procedure which uses the
ISODATA algorithm, clusters with many speaker models are
split and clusters with only a few speaker models are com-
bined. The procedure continues until speakers have been
assigned to an appropriate cluster. During the test stage,
the cluster/speaker model hierarchy is utilized: first log-
likelihoods are computed against the given cluster GMMs



in order to select the appropriate cluster for searching. Then
log-likelihoods are computed against those speaker models
in the cluster in order to identify the speaker. We note that
a similar idea for reducing a search space using clusters or
classes has long been used in the area of content-based im-
age retrieval (CBIR) [12] but it appears that [10] was one of
the first to use clusters for speeding up SI. Likewise, the use
of speaker clusters have been used for fast speaker adapta-
tion in speech recognition applications [13] as well as in the
open-set speaker identification (OSI) problem [14].

Using a 40 speaker corpus, HSI requires only 30% of the
calculation time (compared to conventional SI) while incur-
ring an accuracy loss of less than 1% (details of the corpus
and procedure for timing are not described). Unfortunately,
HSI has a number of drawbacks including an extremely large
amount of computation (which the authors acknowledge) re-
quired for clustering. Because of this required computation,
the HSI method does not scale well with large population
size. Although HSI was shown to speed up SI with little ac-
curacy loss, the small number of speakers used in simulation
does not provide any indication of how accuracy would de-
grade with much larger populations [15].

In a recent publication, a different approach toward effi-
cient speaker recognition has been investigated. In [5], the
authors approximate the required log-likelihood calculations
in (1) with an approximate cross entropy (ACE) between a
GMM of the test utterance and the speaker models; speed-up
gains are realized through reduced computation in ACE. The
authors acknowledge potential problems with constructing a
GMM of the test signal and offer methods to reduce this bot-
tleneck. Also, if the test signal is short the GMM may not
be accurate. The speaker verification results presented in [5]
show a theoretical speed-up factor of 5 without any degra-
dation in false acceptance. Open-set, speaker identification
results show a theoretical speed-up factor of 62 for ACE.

In our research, the focus is strictly on fast speaker iden-
tification. In earlier work [16], we proposed a method to uti-
lize clusters in order to speed-up SI, however, our work dif-
fers from [10] in two regards. First, rather than speaker clus-
tering, we form clusters directly from the speaker models,
i.e. speaker model clustering. This difference is important
as it allows utilization of the simple k-means algorithm and
leads to a scalable method for clustering which we demon-
strated using the large population (630 speakers) TIMIT and
NTIMIT corpora [16]. Second, we investigated searching
more than one cluster so that any loss in identification accu-
racy due to searching too few clusters can be controlled; this
allows a smooth trade-off between speed and accuracy. We
demonstrated that search space could be reduced by 30% -
50% with little or no loss in accuracy; this search space re-
duction reduces the number of speaker models that (1) has
to be computed over. Our work also differs from [5] in that
we make no approximations to (1) relying instead on a re-
duction in the number of speaker models that (1) has to be
calculated against. In addition, whereas the majority of the
results presented in [5] are for SV, our focus is on fast SI.

In this paper, we extend our work by including log-
likelihood criteria into k-means speaker model clustering.
Our new results allow for further reductions in search space
and thus higher speed-up factors while still maintaining ac-
ceptable accuracy levels. In addition, we provide new results
which combine our method with PQ and pruning resulting in
speed increases significantly greater than those cited in [10]

and comparable to those in [5] with little or no loss in ST ac-
curacy. Finally, we note that although many techniques such
as channel compensation and MAP adaptation of speaker
models have been used to improve SI accuracy and robust-
ness of GMM-based SI systems, our focus is on speeding-up
identification of a baseline SI system. It is assumed that these
techniques if applicable to the baseline system would also be
applicable to our system as well.

This paper is organized as follows. In Section 2, we
describe application of the k-means algorithm for speaker
model clustering and two methods for selecting clusters to
search. In Section 3, we describe the experimental eval-
uation and provide new results using the large population
TIMIT (clean speech), NTIMIT (telephone-quality speech)
and NIST2002 (cellular-quality speech) corpora. We also
provide timing results for SI in order to evaluate the proposed
method. In Section 4, we discuss our future directions with
this research and in Section 5 we conclude the article.

2. SPEAKER MODEL CLUSTERING
2.1 Clustering

A direct method of determining clusters, taking into ac-
count all speaker models and training feature sets, leads to
a difficult nonlinear optimization problem. As an alternate
approach to [10], we previously proposed representing the
speaker model as a point in L-dimensional space determined
by its weighted mean vector (WMV) [16]
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This representation allows for simple and efficient applica-
tion of the k-means algorithm to cluster speaker models. The
measure used in k-means to compute Euclidean distances
from speaker model s to cluster centroid, r,, is then
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and r, is calculated as
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where K is the number of speakers in the cluster n, We call
this approach to clustering “Euclidean k-means” since (3) is
used as the measure. Because the cluster centroid does not
have the required GMM parameters {w;, lt;, X;}, many dis-
tance measures as well as the Kullback-Liebner (KL) diver-
gence cannot be used in conventional k-means clustering.

2.2 Factoring in Log-Likelihoods into Clustering

Equations (2) and (3) provide a simple approach toward k-
means-based speaker model clustering. However, the SI de-
cision in (1) is based on log-likelihood and not on a Eu-
clidean distance measure to the GMM. Therefore, we pro-
pose an additional step after Euclidean k-means clustering.
First, we identify the speaker model, AR which is nearest
to each cluster centroid using (3) as in Fig. 1; this speaker
model is called the cluster representative (CR). Second, we



measure the log-likelihood between a speaker model and CR
as

M
dA, AR = =Y log p(xiam|AcR) )
m=1

where M is the number of training feature vectors and x4
are the training feature vectors for speaker s. Third, speaker
models are re-assigned to the nearest cluster using (5) as the
distance measure. After the re-assignment step, cluster cen-

troids are recomputed and new CRs (if any) are identified.
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Figure 1: Space of speaker models and clusters.

If the distance measure in (3) is replaced by (5), a varia-
tion on k-means using the log-likelihood measure and CRs
can be used for speaker model clustering instead of Eu-
clidean distances and centroids; this overcomes the problem
of the centroid not having the required GMM parameters for
other distance measures. We call this alternate approach to
clustering “log-likelihood k-means.” The algorithm for log-
likelihood k-means clustering is listed in Algorithm 1.

Algorithm 1 Speaker model clustering using a log-
likelihood distance

1: Initialize cluster representatives, ?LnCR, 1 <n < N using
randomly-chosen speaker models

2: Compute distance using (5) from A, to AR, 1 <s < S

Assign each A to the cluster with the minimum distance

4: Cgi{npute new cluster centroids using (4) and determine
X

5: Goto step 2 and terminate when cluster membership does
not change.

(98]

2.3 Cluster Selection and Testing

We propose two new methods to select the subset of clusters
which will be searched during the test stage. Both meth-
ods are independent of how speaker models are clustered. In
Method #1, the average of the test feature vectors is com-
puted and those clusters as represented by their centroids
nearest (Euclidean distance) to this average are searched.
In Method #2, we use (5) with x£* to identify the clusters
which contain high likelihood speaker models. We note that
both methods provide a relatively fast and efficient way to

select clusters for searching which is an important consider-
ation for test-stage processing.

3. EXPERIMENTS AND RESULTS

For the TIMIT, NTIMIT, and NIST2002 corpora our SI sys-
tem uses typical design parameters includinga29 x 1,20 x 1,
19 x 1, respectively MFCC feature vector spanning the sig-
nal bandwidth and cepstral mean subtraction [1], [2]. For
the TIMIT and NTIMIT corpora, we use W = 15 compo-
nent densities for the GMMs and approximately 24 s training
signals and 6 s test signals. For the NIST2002 corpus, we
use one speaker detection cellular data (330 speakers) with
W = 15 component densities and approximately 90 s train-
ing signals and 30 s test signals. With a complete calculation
of (1), i.e. full search, our system has baseline identification
accuracies of 99.84%, 70.79% for the 630-speaker TIMIT,
NTIMIT corpus as shown by the dashed line in Figs. 2 and 3,
respectively. These baseline accuracy rates agree with values
published in recent literature [2]. For the NIST2002 corpus,
our system has a baseline identification accuracy of 92.42%
as shown by the dashed line in Fig. 4.

In order to evaluate the proposed approach, we mea-
sure SI accuracy as a function of the percentage of clusters
searched. This percentage is an approximation to the search
space reduction in (1), since the number of speaker models
in each cluster are not exactly the same but are more or less
equally-distributed. As in previous work, we use 100 clusters
[16] for the TIMIT and NTIMIT corpora. For the NIST2002
corpus, we used 50 clusters.

3.1 Evaluation of Clustering and Cluster Selection

Results for TIMIT, NTIMIT and NIST corpora are shown in
Figs. 2 - 4 and in Table 1. In evaluating the two measures
used in clustering, Euclidean k-means and log-likelihood k-
means, for a fixed method of cluster selection, log-likelihood
k-means clustering produces higher SI accuracy results. In
evaluating the two methods of cluster selection, we find that
for the TIMIT, NTIMIT, and NIST2002 corpora, Method #2
generally produces higher SI accuracy results regardless of
the measure used in clustering. The best results occur when
using the combination of a log-likelihood measure for k-
means clustering and Method #2 for cluster selection. In this
case with TIMIT, we are able to search as few as 10%, 20%
of the clusters with a 3.7%, 0.6% loss, respectively in SID
accuracy; with NTIMIT, these losses are 3.7%, 0.3% loss,
respectively and with NIST these losses are 3.0%, 0% re-
spectively. The losses associated with 20% of the clusters are
statistically insignificant. We note that searching 10%, 20%
of the clusters reduces the speaker model space by about a
factor of 10, 5 respectively. Finally searching more than 20%
of clusters results in the same accuracy as the full search.

3.2 Clustering with Prequantization and Pruning

Using the proposed method of speaker model clustering, PQ,
and pruning (static algorithm) [2], we carefully measured the
actual time for a single speaker identification over several tri-
als using all corpora. The average time for a single SI using
no speed-up methods is normalized to 1.0x and the speed-
up factors with clustering, PQ and pruning are listed in Table
2 and associated accuracies are listed in Table 1. Speed-up
gains using only PQ or pruning without speaker model clus-
tering can be evaluated from the data in column 3 of Table
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2 since utilizing 100% of the clusters amounts to using all
speaker models. Although searching 20% of the clusters re-
duces the search space by a factor of 5x, due to the small
overhead involved in Method #2 for cluster selection, the ac-
tually speed-up is 4.4 x. We see from the table that searching
20% of clusters produces similar speed-ups to that of using
the entire search space with pruning; combining the proposed
method of clustering with PQ results in a real-time speed-up
gain of 63x. The combination of the proposed method of
clustering with PQ and pruning results in a speed-up gain of
74%.

Table 1: SI accuracies for TIMIT, NTIMIT, and NIST.
10% of | 20% of | 100% of
Corpus Clusters | Clusters | Clusters
TIMIT 96.2% 99.20% | 99.84%
NITMIT | 67.14% | 70.47% | 70.79%
NIST 89.40% | 92.42% | 92.42%

Table 2: Average SI speed-up factors relative to baseline sys-
tem for fixed SI accuracy.

10% of | 20% of | 100% of
Testing Method Clusters | Clusters | Clusters
Clustering only 8.7x% 4.4% 1.0x
Clustering + Pr 8.8% 6.6 4.4x
Clustering + PQ 117.6x | 62.5x% 14.7x
Clustering + PQ + Pr | 149.2x | 74.0x 31.6x

4. FUTURE WORK

We are investigating a clustering approach which uses KL di-
vergence. However, due to the asymmetry of KL divergence,
our proposed methods for selecting clusters may not be ap-
propriate [17]. In this case, a new method for cluster selec-
tion would have to be developed. In addition, we are investi-
gating the use of speaker model clustering with GMM-UBM
based SI system.

5. CONCLUSIONS

In speaker identification, log-likelihood calculations in the
test stage have been recognized as the bottleneck in terms
of time complexity. In this paper, we have improved upon
our earlier work which utilizes speaker model clusters for re-
ducing the number of speaker models that have to be scored
against, thus enabling faster and more efficient SI. In partic-
ular we have incorporated log-likelihood measures into the
clustering algorithm and proposed new and efficient meth-
ods for cluster selection. Compared to other methods, our
clustering approach scales well for large populations. For the
TIMIT, NTIMIT and NIST corpora, we are able to search as
few as 20% of the speaker model space and incur an insignif-
icant loss in SI accuracy; Finally, SI times are given using
the proposed clustering method together with other speed-up
methods such as, pruning and pre-quantization resulting in
actual speed-up factors as high as 74 x. Higher speed-up fac-
tors (up to 150x) are possible using 10% of the clusters but
with slight decrease in SI accuracy.
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