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ABSTRACT

In this paper, we propose a low bit-rate speech codec based on a hybrid scalar/vector
quantization of the mel-frequency cepstral coefficients (MFCCs). We begin by showing
that if a high-resolution mel-frequency cepstrum (MFC) is computed, good-quality speech
reconstruction is possible from the MFCCs despite the lack of explicit phase information.
By evaluating the contribution toward speech quality that individual MFCCs make and
applying appropriate quantization, our results show perceptual evaluation of speech qual-
ity (PESQ) of the MFCC-based codec matches the state-of-the-art MELPe codec at 600
bps and exceeds the CELP codec at 2000–4000 bps coding rates. The main advantage
of the proposed codec is in distributed speech recognition (DSR) since speech features
based on MFCCs can be directly obtained from codewords thus eliminating additional
decode and feature extract stages.

I. INTRODUCTION

The cepstral analysis of speech signals is a homomorphic signal processing technique
to separate convolutional aspects of the speech production process [1]. Cepstral analysis
allows the pitch and formant structure of speech to be easily elucidated which is important
for pitch detection, phoneme recognition [2], [3], and speaker characterization [4], [5].
As such, cepstral analysis finds widespread use in speech processing including automatic
speech recognition (ASR) and speaker recognition (SR). In particular, analysis based on
the mel-frequency cepstrum (MFC) with a basis in human pitch perception [6], [7] is
perhaps more common, e.g., [5].

Reconstruction of a speech waveform from mel-frequency cepstral coefficients (MFCCs)
is a challenging problem due to losses imposed by discarding the phase spectrum and the
mel-scale weighting functions. Among the earliest investigations for reconstruction of a
speech waveform from MFCCs can be found in [8]. In this work, the authors propose an
MFCC-based codec for use in distributed speech recognition (DSR) where MFCC feature
vectors are extracted and quantized by the client before transmission over the network.
This approach reduces system complexity since an alternate codec would require server-
side decoding and extraction of MFCCs before ASR—with an MFCC-based codec, these
latter two steps are unnecessary.

* Direct all correspondence regarding this manuscript to Dr. Phillip De Leon (pdeleon@nmsu.edu).
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The challenge in the reconstruction of speech from an MFCC-based feature extraction
process normally used in ASR (13-20 MFCCs per frame) is that too much information
is discarded to allow a simple reconstruction of a speech signal [9]. One method we
previously proposed in [10], reconstructs the speech waveform by directly inverting each
of the steps involved in computing MFCCs. For the steps which impose losses, we use
a least-squares (LS) inversion of the mel-scale weighting functions and an iterative LS
phase estimation method. The key to this approach is to simply not discard too much
information by using a high-resolution MFC (large number of MFCCs per speech frame),
thus eliminating the need for auxiliary computation of fundamental frequency as needed
in other methods [8], [9], [11], [12]. Prior to [10], this approach does not appear to
have been proposed despite yielding a much simpler reconstruction algorithm than the
sinusoidal-synthesis based methods presented in [8], [9], [11], [12].

Having developed a method to reconstruct good quality speech from a high-resolution
MFC, we now show in this paper that through proper quantization of high-resolution
MFCCs we can encode at 4800 bps rates (compatible with the ETSI Aurora DSR
standard [11]) while at the same time enabling good quality, intelligible, reconstructed
speech. This high-resolution MFCC vector can be easily downconverted to the standard
low-resolution MFCC vector (13–20 coefficients per frame) for compatibility with ASR.
We argue that our proposed approach satisfies the front-end DSR requirements: 1) ability
to code MFCCs at standard bit-rates, 2) a simple downconversion to lower dimensional
MFCC vectors compatible with ASR, and 3) good-quality reconstruction of the speech
waveform from the MFCCs. We also show that the high-resolution MFC can be coded at
bit-rates as low as 600 bps, yielding speech quality approaching that of the state-of-the-
art MELPe codec [13]–[16]. At higher bit-rates, the MFCC-based codec yields speech
quality better than that of CELP-based codecs [17].

This paper is organized as follows. In Section II, we review the procedure for recon-
struction of the speech waveform from MFCCs previously described in [10]. In Section
III we analyze and discuss the resulting perceptual artifacts due to the reconstruction.
In Section IV, we describe the MFCC-based speech codec which utilizes the proposed
reconstruction method and present results. Finally, we conclude in Section V.

II. RECONSTRUCTION OF THE SPEECH WAVEFORM FROM MEL-FREQUENCY
CEPSTRAL COEFFICIENTS

A. Cepstrum
Computation of the cepstrum begins with the discrete Fourier transform (DFT) of a

windowed speech signal s:

xr[m] = s[rR +m]w[m] (1)

where w is the length L window (0 ≤ m ≤ L− 1), R is the window or frame advance
in samples, and r denotes the frame index. For convenience, we denote the speech frame
as

x = [xr[0], xr[1], . . . , xr[L− 1]]T (2)

(we drop the subscript r to simplify notation) and the spectrum as the Discrete Fourier
Transform (DFT) of x

X = F {x} . (3)
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The cepstrum of x may be defined as

C ≡ F−1
{

log
∣∣X∣∣} (4)

where the inverse discrete Fourier transform F−1 is applied to the log-magnitude spectrum
of x.

B. Mel-Frequency Cepstrum
In the definition of Mel-Frequency Cepstral Coefficients (MFCCs) M we apply a set

of weighting functions Φ to the power spectrum prior to the Discrete Cosine Transform
(DCT) and log operations [7]

M = DCT
{

log Φ
∣∣X∣∣2} . (5)

This weighting Φ is based on human perception of pitch [6] and is most commonly
implemented in the form of a bank of filters each with a triangular frequency response
[7]. The mel-scale weighting functions φj , 0 ≤ j ≤ J − 1 are generally derived from J1
triangular weighting functions (filters) linearly-spaced from 0–1 kHz, and J2 triangular
weighting functions logarithmically-spaced over the remaining bandwidth (1–4 kHz for
a sampling rate of 8 kHz) [7], where J1 + J2 = J . Additionally, in our work we use
two “half-triangle” weighting functions centered at 0 and 4 kHz which we include in J1
and J2 since these will directly affect the number of MFCCs. The use of the two “half-
triangle” weighting functions improves the quality of the reconstructed speech waveform
(described in the next section). In usual implementations, J < L and thus this weighting
may also be thought of as a perceptually-motivated dimensionality reduction.

The mel-weighted power spectrum in (5) can be expressed in matrix form as

Y = Φ |X|2 (6)

where Y is J × 1, the weighting matrix Φ is J × L and has columns φj , and |X|2 is
L× 1.

C. Reconstruction from MFCCs
The MFCCs are primarily used as features in speech processing and are not normally

converted back to speech, however, an estimate of the speech frame can be made from
the MFCCs. In (5), two sources of information loss occur: 1) application of the mel-
scale weighting functions and 2) the phase spectrum is discarded in computing the
power spectrum. Otherwise, the DCT, log, and square operations are all invertible. Thus,
estimation of the speech frame from the MFCCs requires a pseudo-inverse of Φ and an
estimate of the phase spectrum.

1) Least-Squares Inversion of the Mel-Scale Weighting Functions: Since J < L we
are presented with an under-determined problem. In order to solve this problem, we use
the Moore-Penrose pseudo-inverse Φ† =

(
ΦTΦ

)−1
ΦT and form a LS solution, i.e., the

solution of minimal Euclidean norm, for |X|2 as

ˆ|X|2 = Φ†Y = Φ†Φ |X|2 ≈ |X|2 . (7)
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2) Least-Squares Estimation of Speech Frame from Magnitude Spectrum: After pseudo-
inversion of the mel-scale weighting functions, we are left with a magnitude spectrum
from which we must estimate the speech frame. In order to compute the inverse transform,
we must estimate the phase spectrum since this is discarded during computation of the
MFCCs. Due to the under-constrained nature of the pseudoinverse Φ†, it is important
to note that X̂ will not necessarily be a valid STFT in the sense that an STFT contains
inherent structure in time and frequency due in large part to the overlap of the windowing
process [1]. Furthermore, the phase information of the DFT will not be available for
reconstruction of speech. Even with these limitations, we can reconstruct the speech
waveform with the “closest” valid STFT X̃, in terms of least squared-error (LSE), via
the well-known Least-Squares Estimate, Inverse Short-Time Fourier Transform Magni-
tude (LSE-ISTFTM) algorithm [1]. The LSE-ISTFTM algorithm iteratively estimates
the phase spectrum and couples this to the given magnitude spectrum resulting (after
inverse transformation) in a time-domain estimate of the speech frame. The complete
speech waveform is then reconstructed via an overlap-add procedure from the sequence
of estimated speech frames.

III. QUALITY OF SPEECH RECONSTRUCTED FROM MFCCS

Although the DCT, log, and square operations in (5) are all invertible, we utilize a
pseudo-inverse of the mel-scale weighting functions and a phase estimate (LSE-ISTFTM)
in order to complete the reconstruction of the speech frame; these two steps will impose
quality losses. We measure the quality of the reconstructed speech signal using the
perceptual evaluation of speech quality (PESQ) metric. Although originally developed
for evaluation of speech quality in telecommunications applications where speech coding
and distortions due to network conditions degrade quality, PESQ has been used for
other evaluation of other speech processing algorithms. In a recent study on objective
quality measures for speech enhancement, researchers have found that of the seven most
widely used objective measures tested, the PESQ measure yielded the highest correlation
(ρ = 0.89) to overall subjective quality and signal distortion [18]. In this work, PESQ
results were averaged over a sample of 16 TIMIT speakers (8 female and 8 male)
downsampled to a rate of fs = 8000 Hz; each signal is ∼ 24s in duration . The baseline
PESQ score for the TIMIT reference signals is 4.5.

We begin by computing J MFCCs as in (5) using a 240 sample (30 ms) Hamming
window with a 120 sample frame advance (50% window overlap). The number of MFCCs
over 0–1 kHz, J1 is selected as follows. We set J1 = 30 for J ≥ 60 or for J <
60, J1 is selected for highest PESQ (J1 = [7, 15, 20, 30, 30] for J = [10, 20, 30, 40, 50]
respectively), The number of MFCCs over 1–4 kHz, J2 = J − J1. For a 30 ms window
length, the DFT resolution is 331

3
Hz, providing exactly 30 frequency points over 0–1

kHz. Thus, for J ≥ 60 there is no binning of the first 1 kHz; equivalently, the upper
30 × 30 block of Φ is identity. From the MFCCs, we reconstruct the speech waveform
using the method described in Section II-C. Fig. 1 shows the PESQ as a function of J
(the number of MFCCs) for several different values of LSE-ISTFTM iterations.

We see that quality of the reconstructed speech signal from J ≥ 40 MFCCs is fair
(∼ 3.25 PESQ MOS) when the number of LSE-ISTFTM iterations is at least 50. With
J = 70 and 500 LSE-ISTFTM iterations, quality is fair/good (∼ 3.6 PESQ MOS) and
with fewer than 40 MFCCs, quality degrades rapidly. We also note that for a large
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Fig. 1. Inversion of MFCCs in a clean phase-less environment at a various number of
iterations. These results are averaged for a sample of 16 TIMIT speakers.

number of MFCCs (J ≥ 40), doubling the number of LSE-ISTFTM iterations results in
small PESQ improvement (∼ 0.1 PESQ MOS point). Thus we find that the quality of the
reconstructed speech from MFCCs depends more on resolution (number of MFCCs) than
the number of LSE-ISTFTM iterations. For practical implementation with a large number
of MFCCs, we find that 100 iterations provides a good balance between reconstruction
quality and computation and yields a PESQ score within ∼ 2% of the solution obtained
with 500 iterations. For this reason, we will use a total of 70 MFCCs and the LSE-
ISTFTM algorithm with 100 iterations for all work and when evaluating the MFCC-based
codec. This yeilds a benchmark PESQ score of 3.58, thus the signal degradation imposed
by MFCC computation in terms of PESQ is 0.92.

IV. MEL-FREQUENCY CEPSTRUM-BASED SPEECH CODEC

In the previous sections, we have outlined a procedure to reconstruct speech frames
from MFCCs and measured signal degradation imposed by MFCC computation. We now
outline a method for quantization of the MFCCs for low bit-rate speech coding.

A. Assessing the Contribution of Individual MFCCs to Speech Quality
In order to determine a bit-allocation scheme for the MFCCs, we assess the relative

contribution of individual MFCCs on speech quality. Tests were conducted in which we
substituted (one at a time) a single MFCC with its mean value prior to reconstruction of
the speech signal and computed PESQ. The mean values were computed using the entire
TIMIT corpus and the tests were conducted using 16 TIMIT speakers. The resulting
average decrease in PESQ is shown in Fig. 2(a). We see a large decrease in PESQ
(significant degradation) when any of the first several (∼ 7) MFCCs are replaced by
their mean value; less significant degradation occurs for coefficients in the approximate
range of 8–30, when a total of 70 MFCCs are used. This is not unexpected given the
direct correspondence of the initial part of the MFC to formant structure (coefficients
1–14). The source of the smaller degradation is due to the appearance of pitch period
(i.e., vocal excitation) information (coefficients 15–30); it is the high resolution MFC
that allows for the appearance of pitch information as opposed to the standard lower
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Fig. 2. Contribution to speech quality of individual MFCCs. In (a), the MFCC was
replaced (one at a time) by the mean, speech signal reconstructed from MFCCs, and
PESQ decrease was measured. In (b), the variance of individual MFCCs is measured.

resolution MFC. Overall, it appears that the most important MFCCs for perceptual quality
of the reconstructed speech are the first several coefficients which correspond to formant
structure. Fig. 2(a) suggests that more bits will have to be allocated to those MFCCs which
contribute most to speech quality; other MFCCs may be discarded and substitution of
the mean-value (stored in a lookup table) may be sufficient.

Shown in Fig. 2(b) is a plot of the variance of individual MFCCs across the speech
frames. We see that coefficient variance is related to the individual coefficient impor-
tance. Computation of the variance of MFCCs is less computationally expensive and can
therefore be computed over more speakers for a more accurate estimate of coefficient
importance. It is this measure of coefficient importance that will be used in our proposed
speech codec.

B. Non-Uniform, Scalar Quantization of MFCCs
We first consider non-uniform, scalar quantization (SQ) of the MFCCs. The non-

uniform quantization levels are determined using the Lloyd algorithm (k-means cluster-
ing) [1]. Allocating a fixed 4 bits per MFCC, which yields a bit-rate of 4×70÷0.015 =
18, 667 bps, we can realize a PESQ of 3.45 —only 0.13 PESQ MOS points below the
reference which does not quantize the coefficients. This small degradation suggests 4 bits
per MFCC are sufficient to code any MFCC with minimal loss.

In order to reduce the coding rate, we next consider reducing the number of bits per
MFCC based on the variance as discussed in Section IV-A. Given a target bit-rate, we
proportionally allocate bits to each MFCC according to the values shown in Fig. 2(b)
allowing for a maximum of 4 bits and a minimum of 0 bits; in the latter case, we
reconstitute the MFCC by using the coefficient’s mean value (previously determined
from speech data and stored in a lookup table at the decoder). Thus, the number of bits
allocated to coefficient j is

Bj = Bσ2
j/
∑
k

σ2
k, (8)
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of the individual MFCC mean values is only used for scalar quantizer in Section IV-B,
(b) MFCC-based encoder, and (c) MFCC-based decoder where the reconstruction block
includes both the LS inversion of the mel-scale weighting functions and LSE-ISTFTM.

where B is the total number of bits per frame and σ2
j is the variance of the j-th MFCC.

Bj is then rounded to an integer for implementation purposes.
Computation of the codebook is illustrated in Fig. 3(a), the blocks summarize the above

information: from a set of speech data, we begin with computation of high-resolution
MFCCs, measure mean and variance of individual MFCCs, determine the bit allocations
according to (8) for the given bit-rate, and determine the scalar or vector quantization
points, i.e., codewords. The proposed encoder is shown in Fig. 3(b), where the speech
signal is windowed and MFCCs computed (Section II-B) and codewords are output.
Finally, the decoder is shown in Fig. 3(c) where codewords are decoded to MFCCs
according to the codebook and the speech frame is reconstructed (Section II-C).

The performance at various bit-rates for the proposed non-uniform, scalar-quantized
MFCC-codec is shown in Fig. 4 (red circle solid line). The reconstructed speech is
intelligible, and the most noticeable distortion is a muffling effect during voiced speech
segments. This muffling effect is most likely caused by inaccuracies in the estimation of
phase information which worsens at lower bit-rates. However, the reconstructed speech
is free of the harsh synthetic sounds of many model-based codecs.

Interestingly, in the case of small overlap, we have found that inserting interpolated
frames can improve quality of the decoded speech. These inserted frames are the di-
rect linear interpolation of the two adjacent frames and are used by the LSE-ISTFTM
algorithm as if they were a normally computed speech frame. Each interpolated frame
essentially reduces the frame advance by a factor of 2. Fig. 4 illustrates the effect of
inserting 3 interpolated frames for the SQ (red circle dashed line). For this case, recalling
that the original signal was computed with 50% overlap, this is an approximation to a
signal that was computed for 87.5% overlap. It is hypothesized that the redundancy of
the interpolated frame improves in the inversion process of the LSE-ISTFTM algorithm
which is a large source of quality loss (Section III).
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C. Hybrid Scalar/Vector Quantization of MFCCs
We next consider a quantizer which utilizes both SQ and vector quantization (VQ) of

the MFCCs. For a given target bit-rate, we utilize the non-uniform SQ described above
but reserve 6 bits per frame. MFCCs that were allocated 1 bit per coefficient are grouped
into 8-tuples and MFCCs that were allocated 2 bits per coefficient are grouped into pairs.
These groups are then non-uniformly vector quantized while MFCCs that were allocated
3 or 4 bits per coefficient are scalar quantized as before. The 6 bits per frame previously
reserved are used to quantize the MFCCs which were allocated 0 bits. It should be noted
that the coefficient means are no longer required at the decoder, as no coefficients are
allocated 0 bits.

This hybrid SQ/VQ codec improves performance as shown in Fig. 4 (blue square solid
line). Again, there is a muffling associated with the reconstructed speech, but clarity is
improved for all bit-rates. We can again insert interpolated frames to improve quality
of the decoded speech as shown in Fig. 4 (blue square dashed line). Demonstrated by
the insertion of interpolated frames, the window overlap has direct consequences for the
quality of the quantized representation for a given bit-rate (less overlap means more bits
available for each frame) as well as for the quality of the LSE-ISTFTM algorithm (more
overlap increases the redundancy used by the LSE method). As a result, the amount of
window overlap or frame advance was varied. At bit rates less then 3000 bps a frame
advance of 80% with interpolation outperforms the standard 50% frame advance with
interpolation, as ilustrated in Fig. 4 (blue diamond solid line). In fact, at the lowest bit
rates (less then 1000 bps) we achieve the highest quality speech signals with no window
overlap, shown in Fig. 4 (blue star dashed line). Thus it was empirically determined that
for the lowest bit-rate (600 bps) it is better to decrease the window overlap and assign
more bits to encode each MFCC vector and for higher bit-rates (1200, 2400, 4800 bps) it
is better to increase the window overlap and reduce the number of bits for each MFCC.

D. MFCC-Based Codec Performance Comparison
The proposed codec is fully scalable to a wide range of bit-rates. The proposed

MFCC-based codec was compared to other low bit-rate coding schemes, namely Code-
Excited Linear Prediction (CELP) [17] and Mixed-Excitation Linear Predictive enhanced
(MELPe) [13]–[16].
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The CELP class of algorithms has been proven to work reliably and provide good
scalability. Some examples of CELP-based standard codecs consist of G.728 [19] which
operates at 16 kbps and DoD CELP (Federal Standard 1016) [20] which operates at 4.8
kbps. The open-source Speex codec, also based on CELP, operates at a variety of bit-
rates ranging from 2150 bps to 44 kbps [21]. The MELPe algorithm was derived using
several enhancements to the original MELP algorithm [13]. MELPe is also known as
MIL-STD-3005 [14] and NATO STANAG-4591 [15] and supports bit-rates of 1200 bps
and 2400 bps. There also exists a proprietary 600 bps MELPe vocoder algorithm [16].

The performance of CELP (Speex) and MELPe are shown in Fig. 4 (green lines) for
various bit-rates between 600 and 4800 bps. The proposed MFCC-based codec yields
PESQ scores better than the Speex codec for bit-rates ranging from 600 to 4800 bps.
Additionally, the proposed MFCC-based codec matches performance of the state-of-the-
art MELPe codec at 600 bps. Although speech files coded with the MELPe and Speex
codecs are intelligible, they are hindered by the artificial, synthetic-sounding speech
common to many formant based synthesis systems, especially when encoding at the
each codec’s minimum bit-rates. In contrast, the MFCC-based approach generates more
natural sounding speech, but may contain subtle, raspy and scratchy artifacts.

V. CONCLUSIONS

In this paper, we have reviewed our previously-proposed method to reconstruct a
speech frame from high-resolution, mel-frequency cepstral coefficients which relies on
a pseudo-inverse of the mel-weighting functions and a phase estimate provided by the
LSE-ISTFTM algorithm. Reconstruction of the speech waveform from MFCCs results in
quality degradation of approximately one PESQ MOS point but nonetheless still leads to
fair/good quality speech (∼ 3.6 PESQ MOS). We have proposed a speech codec, based
on a hybrid scalar/vector quantization of the MFCCs, which is scalable down to bit-rates
as low as 600 bps. It was shown to have PESQ better than the CELP codec and matches
the state-of-the-art MELPe codec at 600 bps. The proposed codec results in more natural
sounding speech than those of existing codecs without the synthetic-sounding artifacts.
Finally, use of an MFCC-based codec may facilitate speech processing algorithms which
use MFCCs as features such as distributed speech recognition applications.
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