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1 INTRODUCTION

Adaptive �ltering has been successfully used in canceling line echos in the tele-
phone network since the 1960's [179, 443, 387]. In these cases, the adaptive
�lter is used to model the unknown echo path in a communications channel
and then cancel the echo signals from the conversation. An adaptive �lter is
required because the echo path is not only unknown, but also because it is
di�erent for each network path. However, the acoustic echo cancellation prob-
lem is not as easily solved with conventional adaptive �ltering systems due to
the requirements for a much longer adaptive impulse response and for faster
convergence since the acoustic echo path is time-varying during the communi-
cation transmission. In this chapter, we summarize key results from adaptive
�lter theory, and discuss the least mean square (LMS) and normalized least
mean square (NLMS) algorithms used to adjust an adaptive �lter. We then
examine adaptive �ltering in subbands as one method for acoustic echo can-
cellation. Simulations (using a measured room response with speech signals)
demonstrate that the oversampled subband adaptive system provides improved
performance for acoustic echo cancellation applications.

2 LINEAR FIR ADAPTIVE FILTERING

An adaptive system can be characterized by four parts: 1) the adaptive struc-
ture being modi�ed, 2) the con�guration which contains the adaptive structure,
3) the performance measure used to evaluate the current state of the adaptive
structure, and 4) the algorithm used to modify the structure to improve its per-
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formance. In this discussion, we focus on the adaptive system used in acoustic
echo cancellation.

2.1 The Adaptive Structure

An adaptive FIR �lter ŵ, shown in Figure 1, is one of the most commonly-used
structures for adaptive systems. In an adaptive FIR �lter, the �lter coe�cients
(or weights) vary with time, and thus the impulse response and corresponding
transfer function of the �lter also vary with time.
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Figure 1 Adaptive FIR �lter.

2.2 The Adaptive Con�guration

An unknown system w, may be changing over time, may be too complicated to
compute directly, or may need to be computed in real-time. In these situations,
a system identi�cation or system modeling con�guration is used as illustrated
in Figure 2. In this con�guration, an adaptive �lter, ŵ attempts to model the
unknown system using the input and the output of the unknown system, w.
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Figure 2 System identi�cation con�guration.
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To see how the system identi�cation con�guration is used in the cancellation
of acoustic echos, consider the hands-free teleconferencing system in Figure 3
which shows a speaker and a microphone at each end of the channel. Without
echo cancellation systems, a �ltered version of the signal from one side of the
conversation (for example, originating from A) can pass through the network
at B, and is then added to the signal originating from B; this causes an echo
to be added to the signal received by A.

→

←

A B

Figure 3 Teleconferencing system.

To eliminate this echo, an adaptive �lter is introduced at each end of the
teleconferencing system, in parallel to the room echo path, as shown for one
end in Figure 4. In this system identi�cation con�guration, the adaptive �lter,
ŵ builds a model of the room echo path, w and the output from the model is
subtracted from the output containing the echos, yielding a signal in the return
path that has little or no echo.

-
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w
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ˆ y[n] 

e[n]

Figure 4 Acoustic echo canceler application.

2.3 The Performance Measure

The objective of the adaptive �lter in Figure 2 is to modify an input signal, x
such that the resulting signal estimates a desired signal, y. An error signal, e is
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computed by subtracting the output of the adaptive �lter ŷ, from y, as shown
in Figure 2. If the error signal is large, then ŷ is not a good match to y; if
the error signal is small, then the output of the �lter is a good match to the
desired signal. Thus, the error signal provides a measure of the ability of the
adaptive �lter to model the unknown system. The mean-squared error (MSE),
�, is used as the performance measure for the adaptive �lter (instead of just the
error itself) because it provides a performance surface that is quadratic with
respect to the �lter coe�cients. This performance surface can be shown to be
a function of the correlation of the input signal, x and the cross-correlation of
the input and output signals to the unknown system [179, 443]

� [n] = E [e[n]e�[n]]

= E
�
(y [n]� ŷ [n]) (y [n]� ŷ [n])�

�
= E

h
jy [n]j

2
i
� ŵHp� pHŵ + ŵHRw (11.1)

where ŵ is a column vector of the adaptive �lter coe�cients; R is the input cor-

relation matrix, E
�
x [n]xH [n]

�
; p is the cross-correlation vector, E

h
x [n] y [n]

H
i
;

and H refers to the conjugate transpose.

It can be shown [443] that the eigenvectors of the input correlation matrix de�ne
the principal axes of the error surface and that the corresponding eigenvalues
give the second derivatives of the error surface with respect to the principal
axes. The e�ect of these eigenvectors and eigenvalues on the adaptive process
will become evident in the next section.

2.4 The Adaptive Algorithm

We now consider algorithms for adjusting the adaptive �lter to its optimum,
which minimizes the MSE. Since the MSE surface is quadratic, the minimum
occurs at the point at which the gradient (derivative of the MSE) with respect
to the �lter coe�cients is equal to zero. Therefore, taking the gradient of the
MSE in Equation (11.1), we have

r (� [n]) = 2Rŵ� 2p: (11.2)
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Assuming that R is nonsingular, we can then set the gradient to zero and solve
for the optimum �lter coe�cients

ŵopt = R�1p (11.3)

where R�1 is the inverse of R. Thus, if R is known, we can solve directly for
the optimum �lter coe�cients, using Equation (11.3) which is also called the
Wiener �lter solution.

In many applications, either R is not known or is time-varying, and thus a
direct solution for ŵopt may not be feasible or will not be optimal at all times.
In these cases, an adaptive algorithm is desired that can start at any initial
�lter setting, and converge to ŵopt.

Most adaptive algorithms fall into two categories: gradient-based algorithms
(search algorithms that use an estimate of the gradient to determine the direc-
tion of the minimum); and recursive least squares (RLS) algorithms (algorithms
that use iterative techniques to determine the optimum �lter coe�cients at any
point in time by computing R�1 [n], the inverse of R at time n). There are
many variations of gradient-based algorithms, including steepest descent algo-
rithms and random algorithms. There are also a number of variations of RLS
algorithms, including the sequential regression algorithm (SER) and fast RLS
algorithms that are able to e�ciently estimate R�1 [n].

In the acoustic echo cancellation application, we use a steepest descent algo-
rithm because it is simple and requires fewer computations per iteration than
other algorithms. The general form of a steepest descent algorithm is the fol-
lowing

ŵ [n+ 1] = ŵ [n]�
1

2
�r (� [n]) (11.4)

where � is a convergence parameter that controls the size of the step taken at
each iteration along the performance surface. The factor 1

2
is used merely for

convenience. If you consider a simple quadratic function of one variable that has
only positive function values, a point on the function with a positive gradient (or
slope) will be to the right of the minimum, and thus the weight value should be
decreased to move toward the optimum weight value. Similarly, a point on this
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quadratic function with a negative gradient will be to the left of the minimum,
and the corresponding weight value should be increased to move toward the
optimum weight value. Thus, in general, the weight increment should be in the
direction of the negative gradient, as shown in Equation (11.4).

In real-time processing applications, we usually do not know R and p, and in
addition, they may be changing in time. Thus, we need to use an estimate of
the gradient. The LMS algorithm [179, 443] uses an instantaneous estimate of
the gradient to determine the following algorithm

ŵ [n+ 1] = ŵ [n] + �x [n] e� [n] : (11.5)

Convergence of the LMS algorithm to the optimum weight values depends
on the convergence factor, �. Since the eigenvalues give the steepness of the
performance surface, the bound for the step-size (or convergence parameter) is
a function of the maximum eigenvalue of the correlation matrix, R [179, 443]

0 < � <
2

�max
: (11.6)

Since the eigenvalues are generally not simple to estimate, a practical guideline
for the upper bound of the convergence parameter can be developed that uses
the fact that the trace of R is equal to the sum of its eigenvalues. Hence,
the maximum eigenvalue is less than or equal to the trace of R which may be
approximated by the �lter length times the input signal power. Thus, an upper
bound for � is

0 < � <
2

N (signal power)
: (11.7)

The NLMS algorithm can be viewed as a modi�cation of the LMS algorithm
that gives it a time-varying step-size parameter that accounts for variations
in the input signal power. The NLMS algorithm can also be developed as
a solution to a constrained optimization problem [179] using the method of
Lagrange multipliers. In either case, the �nal form of the NLMS algorithm is
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ŵ [n+ 1] = ŵ [n] +
~�

a+ kx [n]k
2
x [n] e� [n] (11.8)

where a (used to avoid possible division by zero) is greater than 0, ~� is between

0 and 2, and kx [n]k
2
is the norm squared or power of the input vector x [n].

The next section of this chapter presents a subband adaptive �ltering solution
for acoustic echo cancellation, and compares it to the full-band solution.

3 THE SUBBAND ADAPTIVE FILTERING

SYSTEM

The motivation for adaptive �ltering in subbands stems from two well-known
problems in full-band adaptive �ltering. First, the convergence and tracking of
a gradient-based adaptive �lter can be very slow if the input correlation matrix
is ill-conditioned or equivalently if the input signal has wide spectral dynamic
range such as that found in speech [179, 171]. Second, very high-order adaptive
�lters are computationally expensive. One technique used to overcome these
limitations is to decompose the signal into subbands and adaptively �lter each
subband signal using separate adaptive �lters. The �lter bank is the primary
tool used to perform the subband decomposition. The earliest references to
this technique used in acoustic echo cancellation applications were Furukawa in
1984; Itoh, Maruyama, Furuya, and Araseki in 1985; and Kellermann in 1985
[387, 209].

In the subband adaptive �lter system for a system modeling con�guration (Fig-
ure 5), the desired output signal, y, and the input signal, x, are split into M
subband signals by analysis �lters, h0; � � � ;hM�1, and downsampled by a fac-
tor of D. A bank of adaptive �lters, ŵ0; � � � ; ŵM�1, each adjust themselves
(usually using the NLMS algorithm) so as to minimize their mean squared
subband error, em, which as mentioned earlier, is taken as the square of the
di�erence between the desired subband signal, ym and the subband adaptive
�lter output, ŷm. The subband error signals may be used either directly (as
in Figure 5) or indirectly to reconstruct a full-band output. Reconstruction of
the full-band signal consists of upsampling by a factor of D and �ltering with
synthesis �lters, g0; � � � ;gM�1.
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Figure 5 Subband adaptive �ltering system (system modeling con�guration).

The �rst bene�t of this system results from the fact that the subband adap-
tive �lters are shorter in length than the equivalent full-band adaptive �lter
(although the total number of adaptive FIR coe�cients is usually the same)
and operate at a downsampled rate. The lengths of the adaptive �lters do not
necessarily have to be equal and in fact there may be certain advantages in
adjusting the length of each �lter to better match the signal characteristics in
that band [164]. The second bene�t stems from the subband decomposition of
the input and desired output signals by the analysis �lters. By decomposing
the signals, the adaptive �lters operate on a smaller bandwidth and can be
adjusted to take advantage of this fact. Furthermore, in a critically sampled
(D = M), subband adaptive �lter, the subband decomposition of the input
may decrease the spectral dynamic range of the subband input, resulting in
faster convergence for gradient-based algorithms. On the downside is the in-
creased design complexity of the technique, the end-to-end delay associated
with analysis and synthesis �ltering, and the aliasing due to downsampling. In
oversampled systems (D < M), there is the undesirable potential to increase
the spectral dynamic range of the subband input which equivalently increases
the eigenvalue disparity (�max=�min) and in turn, slows the convergence rate
of the subband adaptive �lter for gradient-based algorithms [279]. All these
factors have warranted closer study and analysis in recent years.
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4 COMPUTATIONAL COMPLEXITY OF

THE SUBBAND ADAPTIVE FILTERING

SYSTEM

To gain an understanding of the computational advantage the subband system
has over the full-band system, we compute the computational complexity of
the M=D oversampled, M -band subband adaptive �ltering system (Figure 5),
as measured by the number of real multiplications per input sample. This is
computed in two parts: the complexity for subband �ltering, Csubband;1 and
the complexity for adaptive �ltering Csubband;2.

Assume that x and y are real signals, that analysis and synthesis �ltering
is implemented with the polyphase uniform DFT �lter bank [108], that the
prototype analysis/synthesis �lter is length L, and that M=D is an integer.
Then Csubband;1 is computed as follows. There are a total ofM polyphase �lters,
each of length L=D operating at a rate of 1=D in the �lter bank thus requiring
LM
D2 real multiplications per input sample. This operation is performed three
times: for the analysis �ltering of x and y and for the synthesis �ltering of
e0; � � � ; eM�1. The M -point DFT and IDFT are implemented (assuming M is
a power of 2) with a radix-2 FFT which requires approximately M

2
log2M �M

complex multiplications. For real data, the M -point IDFT can be realized
with an M=2-point FFT and M=2 complex multiplications [104]. This results
in M log2

M
2
real multiplications for the analysis �ltering of x and y; a similar

realization holds for the synthesis �ltering of e0; � � � ; eM�1. Thus the total
number of real multiplications for subband �ltering per input sample is

Csubband;1 =
3LM

D2
+ 3M log2

M

2
: (11.9)

Since the input and desired output signals are real, the DTFT is symmetric.
Exploiting this symmetry will require processing of M

2
+ 1 of the subbands

with subbands M
2
+ 1; � � � ;M � 1, taken as the respective complex conjugates

of subbands M
2
� 1; � � � ; 1. Furthermore, the uniform DFT bank will yield

real signals in subbands 0 andM=2 and complex signals in the other subbands.
Thus two adaptive �lters will have real coe�cients and M

2
�1 will have complex

coe�cients. Assume the length of the impulse response to be modeled is N ,
each adaptive �lter is of length N=D operating at the downsampled rate, and
the LMS algorithm (either real or complex) is used for the update. The total
number of real multiplications for adaptive �ltering per input sample is
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Csubband;2 =
2
�
2N
D

+ 1
�
+ 4

�
M
2
� 1

� �
2N
D

+ 1
�

D

=

�
2N

D
+ 1

��
2M � 2

D

�
: (11.10)

The complexity for the M=D oversampled, M -band subband adaptive �lter
system is then taken as the sum of Equations (11.9) and (11.10)

Csubband = Csubband;1 + Csubband;2

=
3LM + 4MN � 4N

D2
+

2M � 2

D
+ 3M log2

M

2
: (11.11)

Figure 6 contains a plot of the normalized (Csubband=Cfull�band) subband com-
putational complexity with L = 129 and N = 512 versus the number of sub-
bands, M , for critically sampled and 2� oversampled systems.

It is clear from the plot (for the parameters used) that critically sampled sub-
band systems with 4, 8, 16, or 32 subbands (in the derivation we assumedM is
a power of 2) are computationally more e�cient than the equivalent full-band
system. Furthermore, 2� oversampled subband systems are more e�cient with
16 or 32 subbands.

5 EXPERIMENTAL SETUP

The experimental results presented in this chapter were conducted in software
on a general purpose computer and use both full-band and subband adaptive
system modeling con�gurations for comparison. The unknown system, w, is
an actual impulse response for a room, sampled at 8 kHz and truncated to
512 samples. In all experiments, M = 4 and e�cient polyphase, uniform DFT
�lters are used for analysis and synthesis �ltering [108]. The analysis �lter
prototype was designed using the Parks-McClellan algorithm and is of length
129. The synthesis �lters were the same as the analysis �lters. Magnitude
responses for these �lters are illustrated in Figure 7.
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Figure 6 Normalized computational complexity for the subband adaptive
�ltering system.

The adaptive �lters were all of length
�
512
D

�
and use the NLMS algorithm for

the update with a = 0:01 and ~� = 1=3. Adaptive �ltering was done only in
subbands 0, 1, and 2 since y3; ŷ3 were taken as y�1 ; ŷ

�

1 respectively, due to the
complex conjugate symmetry of the uniform DFT �lter bank. The adaptive
�lters in subbands 0 and 2 were real and in subband 1 was complex. Zero-mean,
unit-variance white Gaussian noise input was used to measure the convergence
of both the full-band and subband systems, and experiments were averaged
over 100 simulations. MSE plots were smoothed with a 100 point moving
average �lter and 2� oversampled subband MSE plots were smoothed with a 50
point moving average �lter. Power spectrum plots were obtained from the last
1024 points of the hanning-windowed error signal. In a separate experiment,
speech input was also used to measure the performance. The speech signal was
composed of the utterance \Zero One Two Three Four Five Six Seven Eight
Nine", sampled at 8 kHz, and is shown in Figure 8.
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6 CRITICALLY SAMPLED SYSTEMS

The �rst experiments in subband adaptive �ltering used critically sampled sub-
bands for maximum e�ciency. The primary result of these experiments is the
gain in computational e�ciency. However, as can be seen in Figure 9, the sub-
band MSEs quickly level o� due to the inability to properly model the aliasing,
which is present in the critically sampled subbands. The point at which con-
vergence levels o� is usually referred to as the asymptotic level.

The high asymptotic levels in the subband MSEs, result in a high asymptotic
level for the reconstructed full-band MSE, as shown in Figure 10. Included on
this plot for comparison is the MSE for the equivalent full-band system. During
the initial convergence the subband system performs equally well as compared
to the full-band system. However, as mentioned earlier, the e�ects of aliasing in
the subbands hinders the ability to properly model and the performance tapers
o�.
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Figure 9 Subband MSEs for the critically sampled subband adaptive �ltering
system.
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Spectral analysis of the reconstructed full-band error signal (Figure 11) shows
marked spectral peaks at the crossover frequencies (corresponding exactly to
the aliased parts of the spectrum) in the �lter bank indicating the inability of
the system to properly model in these frequency regions.

We next compare the performance of the critically sampled subband system
with the full-band system using speech as the input. As mentioned earlier, the
subband system performs a spectral decomposition of the input and for speech,
this should be bene�cial. Figure 12 illustrates the MSE of both systems and
the results show very comparable performance between the two systems.

In an attempt to retain the critical sampling rate and have more accurate mod-
eling (smaller output error), a slightly di�erent subband system was proposed
and is illustrated in Figure 13 [165].
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Figure 10 MSE for full-band and critically sampled subband adaptive �lter-
ing systems.
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Figure 11 Average power spectrum of the error signal for the critically sam-
pled subband adaptive �ltering system.
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Figure 13 Critically sampled subband adaptive �ltering system with adap-
tive cross �lters.

In this system, adaptive cross �lters are used in which the input is from one
subband and the error signal used for update is from another subband. In
experiments with input noise with a speech-like spectrum (USASI noise), it was
demonstrated by Gilloire and Vetterli [165] that the critically sampled, eight-
band subband system with adaptive cross �lters had a lower asymptotic level
than the two-band subband system without cross �lters. However, there was
no signi�cant gain in the convergence rate for either system as compared to the
full-band system. In a separate experiment with white noise input, a two-band
subband system with adaptive cross �lters and perfect reconstruction �lter
banks achieved perfect modeling, although the convergence rate was slower.
It was ultimately concluded, however, that oversampled systems provided the
best method of adaptive �ltering in subbands, both in terms of convergence
and computational e�ciency [165]. In the next section, we present results from
oversampled subband systems.
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7 OVERSAMPLED SYSTEMS

Due to the inability of critically sampled subband systems without cross �l-
ters to adequately model in the presence of aliasing, we consider oversampling
the subband signals as a means of eliminating the e�ects of aliasing. This
of course, reduces the computational e�ciency as compared to the critically
sampled system. In these experiments, the subbands are 2� oversampled and
from a practical standpoint, this is more oversampling than actually needs to
be done. As can be seen in Figure 14, the subband MSEs do not have the char-
acteristic high asymptote that the critically sampled subband MSEs have, but
nonetheless exhibit an asymptotic convergence after a fast initial convergence
[279].
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Figure 14 Subband MSEs for 2� oversampled subband adaptive �ltering
system.
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Consequently, the reconstructed full-band MSE for the oversampled subband
system (Figure 15) exhibits this slow asymptotic convergence as well. Included
on this plot for comparison is the MSE for the full-band system. During the ini-
tial convergence the subband system performs better than the full-band system
but is less e�ective afterward. The oversampled subband system does, however,
have better convergence as compared to the critically sampled system. In an
environment where w is changing over a period of time shorter than the ini-
tial convergence period (as in the case of acoustic echo cancellation), initial
convergence will most a�ect cancellation quality.
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Figure 15 MSE for full-band and 2� oversampled subband adaptive �ltering
systems.
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Spectral analysis of the error signal (Figure 16) also shows marked peaks located
in the vicinity of the crossover frequencies. These peaks are not due to aliasing
but rather due to the small eigenvalues associated with the analysis �lter roll-
o� in the oversampled case. This characteristic is the basis of the theory of
slow asymptotic convergence of LMS acoustic echo cancelers [279, 119].

Figure 17 contains the MSE plot for the full-band and subband systems with
speech input. In this plot, the oversampled subband system achieves 0-20
dB increase in convergence over the full-band system as well as the critically
sampled subband system but asymptotic convergence is still present.
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Figure 16 Average power spectrum of the error signal for the 2� oversampled
subband adaptive �ltering system.
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Figure 17 MSE for full-band and 2� oversampled subband adaptive �ltering
systems under speech input.

8 CONCLUSION

In this chapter we have seen how using multiple adaptive �lters in a �lter bank
can reduce the computational requirements of a very high-order adaptive �lter
and reduce the e�ects of disparate eigenvalues. The performance in terms of
MSE under white noise input is comparable to the full-band system during the
initial convergence but degrades due to aliasing e�ects in the critically sampled
system and slow asymptotic convergence e�ects in the oversampled system.
Under speech input, the critically sampled subband system performs compara-
bly to a full-band system. The 2� oversampled subband system with speech
input, however, o�ers as much as a 20 dB reduction in MSE (in our experi-
ments) when compared to the full-band system or critically sampled subband
system.
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