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ABSTRACT

For large population speaker identification (SI) systems, like-
lihood computations between an unknown speaker’s test fea-
ture vectors and speaker models can be very time-consuming
and detrimental to applications where fast SI is required. In
this paper, we propose a method whereby speaker models
are clustered using a distributional distance measure such as
KL divergence during the training stage. During the test-
ing stage, only those clusters which are likely to contain
high-likelihood speaker models are searched. The proposed
method reduces the speaker model search space which di-
rectly results in faster SI. Any loss in identification accu-
racy can be controlled by trading off speed and accuracy.
This paper implements GMM-UBM based SI system with
MAP adapted speaker models and the results are presented
on TIMIT, NTIMIT and NIST-2002 large population speech
corpora.

1. INTRODUCTION

Speech is a compelling biometric as it is produced naturally
and in many applications, such as in telephone transactions
speech is the main modality. Also speaker recognition is
an increasing area of research in the security applications.
Speaker recognition is divided into speaker identification (SI)
and speaker verification (SV). The objective of SI is to deter-
mine which voice sample from a set of known voice samples
best matches the characteristics of an unknown input voice
sample [1]. The objective of SV is to verify the identity claim
[1]. SI is a two-stage procedure consisting of training and
testing. In the training stage shown in Fig. 1(a), speaker-
dependent feature vectors, Y, are extracted from a train-
ing speech signal and a speaker model, A; is built. Of the
various speaker modelling techniques, the Gaussian Mixture
Model Universal Background Model (GMM-UBM) based ap-
proach and MAP adaptation of the speaker models has shown
to be very successful in accurately identifying speakers from
a large population and is presently state-of-the-art technique
[2]. GMM-UBMs provide a probabilistic model of the distri-

bution of feature vectors. A standard approach in estimating
the parameters of the GMM-UBM (weights, mean vectors,
and covariance matrices {w;, p;, 3;}) is to use the Expecta-
tion Maximization (EM) algorithm [3] and number of compo-
nents in an GMM-UBM is 1024 — 2048. Individual speaker
models A are adapted from the GMM-UBM [3]. In the test-
ing stage shown in Fig. 1(b), features are extracted from a test
signal (speaker unknown); features are compared and scored
against all the S speaker models; and the most likely speaker
identity, § is decided as
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In assessing an SI system we measure the identification ac-
curacy, computed as the number of correct identification tests
divided by the total number of tests.
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Fig. 1. (a) Training and (b) testing stages in SI



In this paper, we consider the problem of slow speaker
identification for large population systems. In such SI sys-
tems (and SV systems as well), the log-likelihood computa-
tions required in (1) have been recognized as the bottleneck
in terms of time complexity [2], [4]. Although accuracy is
always the first consideration, fast identification is also an
important factor in many applications such as speaker index-
ing and forensic intelligence [5], [6]. We improve upon our
previously proposed speaker model clustering which was de-
veloped for GMM based SI systems to suite for GMM-UBM
based SI systems [7], [8].

Among the earliest proposed methods to address the slow
SI/SV problem on GMM-UBM based systems were pre-
quantization (PQ) and speaker pruning and Gaussian pruning.
In PQ, the test feature set is first compressed through sub-
sampling (or another method) before likelihood computations
[9]. PQ factors as high as 20 have been used without affect-
ing SV accuracy. Application of PQ in order to speed-up SI
has been investigated in [4] and results in a further real-time
speed-up factor of as high as 5x with no loss in identification
accuracy using the TIMIT corpus. In speaker pruning [10],
a small portion of the test feature set is compared against all
speaker models. Those speaker models with the lowest scores
are pruned out of the search space. In subsequent iterations,
other portions of the test feature set are used and speaker mod-
els are scored and pruned until only a single speaker model
remains resulting in an identification. Using the TIMIT cor-
pus, a speed-up factor of 2x has been reported with pruning
[4].

Once the test signal is ready, features are extracted and
first scored against UBM. Experiments conducted in [3], the
authors have found that only few mixtures of a GMM-UBM
contribute significantly to the likelihood score for a speech
feature vector. Moreover, the adapted speaker model retain
certain correspondence with the UBM, therefore likelihood
score of the speaker model can be computed by scoring only
the more significant mixtures. Generally, the top C' mixtures
are considered with 5 < C' < 15. These significant mixtures
can be obtained by scoring the test feature vectors against
the UBM and finding the mixtures from the UBM having the
highest score [11]. Also while calculating the top C' mixtures
individual components of an GMM-UBM with lowest scores
are pruned. After the top C' scoring mixtures are obtained
from the UBM, then test feature vectors are scored against
these C' mixtures in all the speaker models.

In [12], a hierarchical speaker identification (HSI) is pro-
posed that uses speaker clustering which, for HSI purposes,
refers to the task of grouping together feature sets from dif-
ferent speakers with similar acoustic data and modeling the
superset, i.e. speaker cluster GMM. (In most other papers,
speaker clustering refers to the task of grouping together un-
known speech utterances based on a speaker’s voice [13].) In
HSI, a non-Euclidean distance measure between an individ-
ual speaker’s GMM and the cluster GMMs is used to assign

speakers to a cluster. Feature sets for intra-cluster speak-
ers are then re-combined, cluster GMMs are re-built, dis-
tance measures are recalculated, and speakers are reassigned
to “closer” clusters. The procedure iterates using the ISO-
DATA algorithm until speakers have been assigned to an ap-
propriate cluster. During the test stage, the cluster/speaker
model hierarchy is utilized: first, log-likelihoods are com-
puted against the given cluster GMMs in order to select the
appropriate cluster for searching. Then log-likelihoods are
computed against those speaker models in the cluster in order
to identify the speaker. We note that a similar idea for reduc-
ing a search space using clusters or classes has long been used
in the area of content-based image retrieval (CBIR) [14] but it
appears that [12] was one of the first to use clusters for speed-
ing up SI. Likewise, the use of speaker clusters have been
used for fast speaker adaptation in speech recognition appli-
cations [15] as well as in the open-set speaker identification
(OSI) problem [16].

Using a 40 speaker corpus, HSI requires only 30% of the
calculation time (compared to conventional SI) while incur-
ring an accuracy loss of less than 1% (details of the corpus
and procedure for timing are not described). Unfortunately,
HSI has a number of drawbacks including an extremely large
amount of computation (which the authors acknowledge) re-
quired for clustering. Because of this required computation,
the HSI method does not scale well with large population size.
Although HSI was shown to speed up SI with little accuracy
loss, the small number of speakers used in simulation does not
provide any indication of how accuracy would degrade with
much larger populations [17].

In a recent publication, a different approach toward effi-
cient speaker recognition has been investigated. In [2], the
authors approximate the required log-likelihood calculations
in (1) with an approximate cross entropy (ACE) between a
GMM of the test utterance and the speaker models; speed-up
gains are realized through reduced computation in ACE. The
authors acknowledge potential problems with constructing a
GMM of the test signal and offer methods to reduce this bot-
tleneck. Also, if the test signal is short the GMM may not
be accurate. The speaker verification results presented in [2]
show a theoretical speed-up factor of 5 without any degra-
dation in false acceptance. Open-set, speaker identification
results show a theoretical speed-up factor of 62 for ACE.

In our previous techniques in [7], [8] we used non-
distributional distances such as Euclidean distance in our k-
means algorithm for clustering. We vectorized the GMM:s to
conveniently use the Euclidean distance for both the cluster-
ing of speaker models and selection of clusters during the test
stage. In this paper we consider the use of GMM-UBM based
SI systems and use distributional distances for clustering.

This paper is organized as follows. In Section 2, we de-
scribe the distributional speaker model clustering. In Section
3, we describe the experimental evaluation and provide the
results using TIMIT, NTIMIT and NIST-2002 corpora; these



corpora are among the most common, large population speech
databases used in the ST applications. We conclude the article
in Section 4.

2. DISTRIBUTIONAL SPEAKER MODEL
CLUSTERING

Speaker model clustering (SMC) was earlier introduced and
successfully implemented on GMM based SI systems to
speed-up the identification process during the testing in [7],
[8]. Unlike the GMM-UBM systems, where the individual
speaker models are adapted from a GMM-UBM, in GMM
based systems speaker models are directly modeled using
their training feature vectors using the EM algorithm. Thus
each speaker model has M component densities (M ranging
from 16 to 64) parameterized by {w;, p;, 3; }.

In [7], each speaker model is represented by a weighted
mean vector (WMV) given by
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These WM Vs are clustered using the k-means algorithm, Eu-
clidean distance between the speaker models and cluster cen-
troids is used as the distance measure in k-means, where cen-
troid is defined as
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K is the number of speaker models with-in the cluster. Dur-
ing testing, the average of test feature vectors is calculated and
nearest cluster centroid to this average (Euclidean) is identi-
fied and speaker with-in that cluster is searched. With this
technique a speed-up of 2x is achieved with little loss in ac-
curacies on TIMIT and NTIMIT corpora.

In [8], instead of computing the Euclidean distance be-
tween WMV and centroid, a speaker model closest (Eu-
clidean) to the centroid with-in a cluster is selected as the
Cluster representative (CR). The log-likelihood based dis-
tance between the speaker model and CRs is used in k-means
algorithm to cluster the speaker models. During testing, the
test feature vectors are scored against the CRs and the clus-
ter whos CR gives the maximum score is searched. We are
able to speed-up the SI accuracy by a factor of 4x with little
or no loss in accuracies on TIMIT, NTIMIT and NIST-2002
corpora.

As the proposed speaker model clustering is a training
stage clustering after the speaker models are built, it can be
combined with test stage speed-up techniques such as pre-
quantization (PQ) and pruning. When PQ and pruning are
applied at test stage along with SMC we are able to achieve
a speed-up of over 74 x with little or no loss in accuracies on
all the three speech corpora.

2.1. Clustering using Distributional SMC

In this paper the speaker models are MAP adapted from the
GMM-UBM and typically the number of components in an
GMM-UBM systems are 1024-2048. With such high number
of component densities the WMV of each adapted speaker
model using (2) results in vectors which are very compact in
the hyperspace. Such vectors in the k-means clustering results
in clusters which are not improving the speed-ups factors.

Thus a new method of clustering has to be developed
which at any step does not require the vectorization of the
speaker models. Thus clustering based on purely distribu-
tional distances, such as Kullback-Leibler distance need to
be developed. Here we propose distributional speaker model
clustering as the distribution of speaker models is considered
rather than vectorizing the speaker model.

Here we still use k-means algorithm to cluster and the dis-
tance measure used is an approximation of the KL-divergence
given by [18],
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where A¢ g is the CR of cluster n. The CR is chosen as
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where K is the number of speaker models with in a cluster
n and N is the total number of clusters. Thus to select a
CR, all the speakers’ training feature vectors with-in a clus-
ter are scored against a speaker model. This score is calcu-
lated for all the speaker in that cluster and the maximum scor-
ing speaker is selected as the CR. In calculating the above
scores the training feature vectors of a particular speaker are
not scored against their own model. Thus the CR is selected
based on the log-likelihood measure rather than the Euclidean
distance between the centroid and the WMV as in [§]. Algo-
rithm 1 describes the speaker model clustering using above
technique.

Algorithm 1 KL GMM-based Speaker model clustering
I: Initialize cluster centers AR, 1 < n < N using

n
randomly-chosen speaker models

Compute distance using (4) from A\, to ASB, 1 <5< S
Assign each ), to the cluster with the minimum distance
Compute new cluster representatives AS™ using (5)
Goto step 2 and terminate when cluster membership does

not change




2.2. Test Stage

During the test stage as shown in Fig. 2, once the test fea-
ture vectors are acquired, the log-likelihood score is com-
puted against all the CRs and clusters with maximum scoring
representative are searched given as
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Rather than selecting a single cluster to search using crite-
ria in (6) we can also use a subset of clusters ranked accord-
ing to these equations. Using a subset of clusters allows a
smooth trade-off between accuracy loss (due to searching too
few clusters) and speed.
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Fig. 2. Testing stage in SMC

3. EXPERIMENTS AND RESULTS

Experiments have been performed on the TIMIT, NTIMIT
and NIST 2002 corpora. To demonstrate the applicability
of the methods proposed in Section 2 to a wide variety of
GMM-UBM systems, we have added some additional ele-
ments such as delta MFCCs, cepstral mean subtraction (CMS)
and RASTA processing depending on the corpus being used.
Specifically, our baseline system uses an energy-based voice
activity detector to remove silence; feature vectors composed
of 29 MFCCs for TIMIT, 20 MFCCs for NTIMIT and 13
MEFCCs + 13 delta MFCCs for NIST 2002 extracted every 10
ms using a 25 ms hamming window; CMS and RASTA pro-
cessing are applied to NIST 2002. A 1024 component density
UBM is built for each corpus by concatenating the training
feature vectors of all the speakers within that corpus. Individ-
ual speaker models have then been built by MAP adaptation
of parameters of the mean alone with a relevance factor of 16.
For TIMIT/NTIMIT, we use approximately 24s training sig-
nals and 6s test signals and for NIST 2002 (one speaker detec-
tion cellular task) we use approximately 90s training signals
and 30s test signals. Our baseline SI accuracies are 100%,
73.33% and 96.67% on TIMIT, NTIMIT and NIST-2002 re-
spectively.

We partitioned the speaker model space into N clusters
using a range of values for N and measured SI accuracy

rates. We found V. = 100 to give good performance with the
TIMIT/NTIMIT corpora and N = 50 with the NIST 2002
corpus. In order to evaluate the proposed approach, we mea-
sure SI accuracy as a function of the percentage of clusters
searched as shown in Fig. 3. This percentage is an approxima-
tion to the search space reduction in (1), since the number of
speaker models in each cluster are not exactly the same but are
more or less equally-distributed. Using our approach, we are
able to search as few as 10% of the clusters and incur a 2.7%,
2.0%, and 1.3% loss in SI accuracy with the TIMIT, NTIMIT,
and NIST 2002 corpora respectively; searching 20% of the
clusters resulted in accuracy loss of 1.68%, 0.5% and 0% re-
spectively (shown in Table 1). Loss in accuracy associated by
searching 20% of the clusters is very insignificant. Searching
20% of the clusters the speed-up factor achieved is approxi-
mately 5X.
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Fig. 3. Results using SMC

4. CONCLUSIONS

In SI, log-likelihood calculations in the test stage have been
recognized as the bottleneck in terms of time complexity. In
this paper, we have improved upon our earlier work which uti-
lizes distributional speaker model clustering for reducing the
number of speaker models that have to be scored against, thus
enabling faster and efficient SI. In particular we have intro-
duced distributional distances such as log-likelihood based se-
lection of cluster representatives and KL distance based clus-
tering. for the TIMIT, NTIMIT and NIST-2002 corpora, we
are able to search as few as 20% of the clusters and loss in SI
accuracy associated at this percent of clusters is very insignif-
icant. We are able to achieve a speed-up factor of 5x with
the proposed method. In addition, we could also use the test
stage speed-up techniques such as pre-quantization, speaker
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