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Abstract

Adaptive DSSS receivers have advantages over their
fixed-matched filter counterparts including interference
cancellation capabilities and simplification of PN
code acquisition.  However, convergence wusing an
LMS algorithm may be too slow in situations with
relatively high SNR. The wuse of a RLS algorithm
will improve convergence speed but at significantly
increased computational cost; fast RLS algorithms
cannot be used because the filter is updated at the
symbol rate rather than at every sample. In this
paper, we examine subband receivers which utilize
multiple, shorter length adaptive filters with the goal
of speeding up convergence and reducing computation
while maintaining equivalent BERs.

1 Introduction

Adaptive, Direct Sequence Spread Spectrum (DSSS)
digital receivers have several advantages over their
fixed matched-filter counterparts [1]. These advantages
include the ability to minimize the effects of multiple-
access (MA) interference, narrow band interference,
and intersymbol interference (ISI) without having in-
formation about the channel or interferers. Another
advantage of this receiver is that it requires no infor-
mation about the PN code (other than its length) and
thus does not require a code acquisition phase.

In the fractionally-spaced (FS) adaptive DSSS re-
ceiver illustrated in Fig. 1, a received baseband signal,
2(n) which is the sum of a desired component and inter-
ference, is passed through the adaptive filter, w. The
adaptive filter length, N, is equal to the PN code length
times the number of samples per chip. The filter out-
put is sampled at the symbol rate, Ts and compared
with a known training sequence, d(n). The resulting
difference or error, e(n) is used to adjust the filter coef-
ficients. After a training period, the coefficient vector
is an approximation of the pulse-shaped PN sequence
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(if the interference is moderate) and may be fixed or
updated in decision-directed mode.

The input correlation matrix (assuming uncorre-
lated symbols), R is the outer product of the spread-
ing sequence, [s1, 52 ...sr]7 with itself plus a diagonal
matrix, oI representing the zero mean, o2 variance,
uncorrelated, additive white Gaussian noise (AWGN).
Mathematically, the correlation matrix is given by

[ S1 8o ST, ]—l—aQI. (1)
SL

The eigenvalues of (1) are given by {s? +s3+...+s% +

0?,0% ...,0%} and the eigenvalue spread is
Amaz  S1+83+...+5]+0° @)
Amin B o2 .

The eigenvalue spread for such a matrix can be very
large if the noise level is low; such ill-conditioning will
lead to slow convergence of the LMS adaptive filter
which can be a problem in a fast-changing environment.
The use of a RLS algorithm will improve convergence
speed but at significantly increased computational cost
especially in the case of long PN codes; fast RLS algo-
rithms cannot be used because the filter is updated at
the symbol rate rather than at every sample [1].
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Figure 1: Fractionally-spaced adaptive DSSS receiver.

Subband and wavelet transforms have been previ-
ously applied to spread spectrum communications. A



notable overview of the applications are in [2]. In pre-
vious work, we proposed the subband, adaptive DSSS
receiver in order to introduce parallelism into the ar-
chitecture. Such parallelism could allow implementa-
tion of high-speed receivers using relatively low-speed
digital hardware [3, 4]. As illustrated in Fig. 2, the
received digitized baseband signal is decomposed by a
linear transformation, T into M lower rate signals and
adaptive filtering is performed in the subbands. The
shorter adaptive filters have the potential to speed up
convergence and reduce computation while maintain-
ing equivalent bit error rates (BERs). Sampling at the
symbol rate can be done in the subbands due to the as-
sumption that the number of samples belonging to one
symbol is a multiple of M. The subband signals are
added after weighting by the gain factors aq,...,aps
which can also be made adaptive in order to speed up
convergence. Standard transforms such as DCT and
Hadamard were used and performance (BER and con-
vergence rates) was reported using simple LMS adap-
tive filters [4].
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Figure 2: Subband, adaptive DSSS receiver.

In this paper, we further examine the subband,
adaptive DSSS receiver with the focus being on the
transform itself and how it effects the BER and con-
vergence rate of the receiver.

2 Effect of the Subband Transform on
Bit Error Rate

A common assumption about the error signal of an
adaptive filter is that it is white gaussian noise af-
ter convergence of the filter [1]. Therefore the mean-
squared error (MSE) after convergence is directly re-
lated to the BER. In order to understand the effect of
the subband transform on BER, we could calculate the
minimum MSE (MMSE) at the receiver output using a
general transform and arbitrary input autocorrelations.

As it turns out, the MMSE derived in this way is not
too useful for purposes of optimizing the transform for
minimum error, because it is a complicated rational
function involving the elements of the transformation
matrix [5]. Even for the simplest case (two subbands,
length two subband filters), it is still difficult to work
with.

As an alternative, we consider calculating a lower
bound on the output signal-to-noise ratio (SNR) and
designing T to maximize this bound. (Later in the
paper, we will discuss the relation between maximizing
the lower bound and the actual SNR.) Here, we assume
additive, white gaussian noise (AWGN) with variance
0% but no interference. The derivation is presented
for the case of a two subband receiver with length two
subband filters—other cases can be easily generalized
for arbitrary parameters. We refer the reader to Fig. 2
for notation used in this section.

In order to simplify the analysis, we assume the gain
factors are fixed. We denote L as the number of sam-
ples per symbol, and assume N = L/M is an integer.
Next, we define

X = [ X1 X2 XM ]
T11 12 Ce. 1M
T21 o2 Ce. oM
= : : : : (3)
IN1 N2 Ce. TNM

as the N x M matrix whose columns are vectors of
subband (transformed) samples with

M
Tij = thm$(m+(i—1)M) (4)

m=1

where z is the received input signal and ¢;; is the 4, jth
element of T. We define

W = [ Wi W2 W ] (5)
as the matrix whose columns are the coefficient vectors
of the adaptive subband filters. The oversampled and
pulse shaped spreading sequence, s is partitioned into

vectors of length M which form the columns of

S1 SM+1 S(N—1)M+1
S9 SM+2 S(N—1)M+2

S = : : (6)
SMm SoM SNM

The subband version of the spreading sequence is given
by

Sewry = (TS)”



= [ Sa S Senm |
Ssll Sle cee SslM
SsQl 3322 cee SSQM

= : : : : (7)
Ssn1 Ssn2 SeNM

The signal power at the receiver output (after the
rightmost summation in Fig. 2) is given by

P, = [(STSy)ara+ (S%S.w) aal”  (8)

where Sg; is the subband version of the oversampled
pulse shaped spreading sequence defined in (7) and a
is the data bit (either +1 or —1). The noise power,
assuming that the noise outputs of the subbands are
independent (true if the rows of T are orthogonal), is
given by

= (SsTlssl) 2 (t% + t%Q) ai+
(s 2Ss2) 07 (13, +135) 03. (9)
The output SNR is then the ratio of (8) to (9)
Py
N = — 10
SNR P (10)

n

[(ST,Ss1) ara + (SLSs2) azal’

2 [(Szlssl) (t%l + t12) al

Calculating the gradient of (10) with respect to the en-
tries of T, ¢;; leads to a system of nonlinear equations
which is difficult to solve. Therefore some simplifica-
tion of the problem is necessary.

We assume that the absolute value of all elements
of the oversampled pulse shaped spreading sequence
and all elements of T are smaller or equal 1. Then
ST.S,; <8 and

[(Szlssl) oa1a + (SZ&S;Q) 0620/] 2

SNR >
802 [(t%l + t12) al + (tgl + t22) on]

(11)

The problem is now to maximize this lower bound.
If we constrain the denominator in (11) to be

(tn + t12) of + (t21 + t22) o = k (12)

where £ is a constant, then we need only maximize the
numerator. Because the data is assumed to be binary,
the square can be dropped in order to find the extrema.
Using the method of Lagrange multipliers, leads to the
following eigenvalue problem

t11
20{%A1 0 f,12
0 20{%A2 f,21

too

= 0 (13

(SsT2892) (tgl + t22) on] .

where

818218384

A;

2, 2"
S182+8384 sp+sy by
Qi Qi

sf+s§_
[ . ] (1)

Since the submatrices, A; and Az in (13) are identical
except for the factors aq, as, the eigenvectors of

2
51+ 53

5152 + S384
B = 15
[ 5152 + S384 ] (15)

2, .2
55 + 53

solve the optimization problem and yield T. For the
general case of M subbands with subband filter length
N, the entries of B are given by

M

bnn = Zs(i—l)M+m5(i—1)M+n- (16)
=1

The algorithm for finding the optimal transformation
matrix can be summarized as follows. Build the matrix
B with entries as in (16) using the spreading sequence
which is assumed to be given. Find the eigenvectors of
B and use them as the rows of T (in any order).

One open question is the relation between the lower
bound of the output SNR, which was maximized, and
the true SNR. A numerical evaluation of the exact SNR,
equation (10) for different matrices reveals that the ma-
trix T, optimized with the method above leads to the
maximum SNR value. It should be noted that all or-
thonormal matrices also lead to the same maximum
SNR value, but the theory for why this happens is be-
yond the scope of this paper. For more details see [5].

While in theory all orthonormal matrices lead to
the maximum SNR, simulation results (shown below)
demonstrate that the optimized transform performs
slightly better than other standard transforms (DCT,
Hadamard, Identity) which are also (scaled) orthonor-
mal matrices. The main reason is the fact that the
SNR maximization was done assuming a matched fil-
ter, however an adaptive filter converges to the Wiener
solution. Another reason is the additional noise each
adaptive filter creates because the tap vector is wan-
dering around the optimal solution. Therefore it is
better, regarding the output SNR, to concentrate the
signal energy into as few subbands as possible (which is
what is ultimately happening with the optimal trans-
form) while the subband filters containing no signal
energy adapt to the zero vector. This feature may be
exploited to reduce computation in subbands with lit-
tle or no signal energy.

The BER performance of the proposed subband,
adaptive DSSS receiver was simulated and compared
to theory, the matched filter (MF) receiver, and the
fullband adaptive DSSS receiver. These results are



shown in Fig. 3 and illustrate that the optimal trans-
form is slightly better than the standard transforms.
System parameters include a length 31 PN sequence,
chip pulses shaped with a square-root raised cosine
(SRRC) filter (50% excess bandwidth), and a NLMS
adaptive algorithm; we assume perfect carrier and chip
synchronization. For each simulation point, 2 x 10°
symbols are used, the MSE curves are averaged over
100 simulation runs. In addition, we assume four other
users (MA interference) and three narrowband interfer-
ences (sinusoids), each 6dB stronger than the desired
signal; zero mean, white Gaussian noise is also added
to achieve a desired SNR which during training is 6dB.
In the fullband receiver, the adaptive filter length is 128
(length 31 PN sequence, four samples per chip which
yields 124 samples, resampled to get 128 samples). In
the subband receiver, we use M = 4 subbands with a
subband adaptive filter length of 32.
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Figure 3: Bit error rate for the subband receiver using
various transforms.

3 Eigenvalue and Convergence Analy-
sis with LM'S/INLMS Filters

In this section, we investigate how T effects the
eigenvalue spread of the autocorrelation matrices of
the subbands. As is known, this determines the con-
vergence speed of the LMS/NLMS subband adaptive
filters [6].

3.1 Desired User in AWGN

As described earlier, the autocorrelation matrix of
the received signal is given by (1). The subband
autocorrelation matrices are also outer products plus
AWGN. For the case of two subbands and length two
subband filters, the autocorrelation matrix of the first

subband is
2
r1 £1P3 2 (42 2
R = +0° (t7; +t15) 1 (17
11 [plpg P2 ] (11 12) (17)
where
p1 = (ti1s1 +t1282) (18)

p3 = (t1153 +t1254).

The eigenvalue spread of subband 1 is then

)\max p% + p% + 02 (t%l + t%Q)
= 5T 5 ) (19)
)\min 9 (tll + t12)

This expression shows that designing T to minimize
the eigenvalue spread in subband 1 (and thus speed
up convergence in LMS/NLMS case) is in conflict with
maximizing the output SNR in subband 1 since

p% + pg = S{Sl, (20)

appears also in the numerator of the SNR as in (10).
This is, of course, a measure of the signal energy in
subband 1. To see this conflict another way, for max-
imum SNR in subband 1, the first row of T, [t11
t12], should be correlated with the oversampled, pulse-
shaped spreading sequence, s1, ..., S4, as much as pos-
sible. For minimum eigenvalue spread in subband 1,
[t11 t12] needs to be orthogonal to the spreading se-
quence and thus in direct contrast to maximizing the
SNR of subband 1.

Based on the results of Section 2, however, a rea-
sonable tradeoff between receiver convergence time and
SNR performance is possible by distributing the signal
energy as uniformly as possible between the subbands.
As a side note, we can show in the case of Multiuser In-
terference that simultaneous maximization of the sub-
band SNR and minimization of the subband eigenvalue
spread is also not possible. However, as above, a rea-
sonable tradeoff can be made between receiver con-
vergence time and BER performance with appropriate
choice of transform.

3.2 RLS Subband Adaptive Filters

The results in the previous section demonstrate that
a subband transform for the adaptive DSSS receiver
cannot be designed to improve the convergence speed
of the LMS/NLMS filters while maintaining good BER
(which is the ultimate goal). The situation is different
if the RLS algorithm is used because the convergence
speed of this algorithm depends on the filter length un-
like that of LMS/NLMS algorithms which depend on
the eigenvalue spread of the input correlation matrix.
Of course the price paid for RLS’s fast convergence is
increased computation (proportional to the square of



the filter length). Fig. 4 shows the BER of the fullband
receiver as well as for the subband receiver (using a
DCT) with four and eight subbands using RLS filters,
under the same interference conditions as in the previ-
ous section. The scaling factor of the initial correlation
matrix of the RLS algorithm provides some possibility
to trade final MSE value for convergence (found dur-
ing experiments), however it is difficult to adjust the
final MSE to the same value as the fullband receiver.
Therefore the receivers are compared with final MSE
values and BERs not exactly equal. Comparison of
convergence times of the fullband and subband adap-
tive receivers is based on the similar BER performance,
e.g. the BER of the fullband receiver was adjusted by
varying parameters in the RLS algorithm until it was
approximately the same as the BER for the subband
receiver. Then convergence time was then measured by
how long it takes the MSE to come within 1dB of the
steady-state value. Table 1 summarizes the simulation
results along with the matched filter receiver and the-
oretical results. As seen from Table 1, the proposed
subband receiver has a BER performance comparable
to the fullband receiver. With M = 8 subbands, there
is a slight degradation in BER (but still better than
the matched filter receiver) due to losses associated
with the higher-dimension decomposition. However,
as expected when using the RLS algorithm, we achieve
faster convergence with the shorter length filters.
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Figure 4: Bit error rate for the subband receiver with

RLS adaptive filters.

4 Conclusions

In this paper, we have carefully analyzed the trans-
form used in a proposed subband, adaptive DSSS re-
ceiver with the goal of improving BERs, convergence
speed, and computational complexity. Our work shows

Table 1: Performance of Subband, Adaptive RLS
DSSS Receiver.
Number of BER for Various SNRs Conw.
Subbands 0dB 3dB 6dB Time
Theoretical | 0.0880 | 0.027 | 0.0030 | N/A
MF Receiver | 0.1558 | 0.1210 | 0.0999 | N/A
1 (Fullband) | 0.1237 | 0.0515 | 0.0109 | 150 Sym
4 0.1140 | 0.0471 | 0.0097 | 100 Sym
8 0.1232 | 0.0556 | 0.0146 | 50 Sym

that while an optimal transform can be designed to
improve (slightly) BERs compared to standard trans-
forms, it cannot improve convergence when using sub-
band LMS/NLMS adaptive filters. However, when
used with subband RLS adaptive filters, both conver-
gence speed and computational complexity can be im-
proved.
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