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Abstract
Blind Source Separation has been an extremely

active area of research for the last few years. Most of
the research has been focused on separation of sources
from one-dimensional mixture signals such as speech.
More recently, separation of two-dimensional sources
(images) has been also examined to a limited extent
using second-order statistics, information theoretic
models, and neural networks. In this paper, we extend
a simple kurtosis maximization algorithm, successfully
used in separation of instantaneous speech signals, to
images. The higher-order statistics-based algorithm is
simple and performs relatively well.

1 Introduction
Blind Source Separation (BSS) and Independent

Component Analysis (ICA) have been extremely active
areas of research for the last few years [1]. Both of these
methods seek to separate out one or more individual
source signals from one or more mixture signals us-
ing either Higher Order Statistics (HOS), Information-
Theoretic (IT) Models, or Neural Networks (NN). Mix-
ture signals are modeled as either an instantaneous mix
of scaled sources or as a more general convolutional mix
of filtered sources.

In instantaneous mixing, source signals s1(η) and
s2(η) are projected onto a mixing matrix, A composed
of scalar elements to produce the mixture signals, x1(η)
and x2(η). In matrix form we have

[

x1(η)
x2(η)

]

=
[

a11 a12

a21 a22

] [

s1(η)
s2(η)

]

(1)

or

x(η) = As(η) (2)

where s = [s1(η) s2(η)]T and x(η) = [x1(η) x2(η)]T .
The independent variable set η can be either a sample
index n for a one dimension signal, like speech, or a
spatial coordinate (m, n) for a two dimension signal,
like an image.

In the BSS problem, we seek to build a de-mixing
matrix, W which is an estimate of A−1 such that the
output signals, y1(η) and y2(η) approximate the origi-
nal, unknown sources. In matrix form we have,

[

y1(η)
y2(η)

]

=
[

w11 w12

w21 w22

] [

x1(η)
x2(η)

]

(3)

or

y(η) = Wx(η) (4)

where y(η) = [y1(η) y2(η)]T . In convolutional mix-
ing, the sources are convolved with a mixing matrix
whose elements are now digital filters, aij and we seek
a de-mixing matrix composed of elements which are
also digital filters, wij in order to minimize co-channel
interference from the other (filtered) source.

Most of the BSS/ICA research has been focused
on separation of sources from one-dimensional mixture
signals such as speech. In the speech application, we
assume a convolutional mixing (as would be expected
in a reverberant environment) with individual mixing
filters having on the order of thousands of coefficients.
Although this problem appears (and is) extremely dif-
ficult, some success has been reported [2]. To a more
limited extent, signal separation has been extended to
cases with two-dimensional sources(images). Applica-
tions include the separation of original thermal wave
images from the noise-deteriorated images for nonde-
structive evaluation (NDE) of materials and the ex-
traction of the foetal electrocardiogram (FECG) from
skin electrode signals in biomedical signal processing.
Noteworthy is the work by Sahlin and Broman which
separate simple convolutional mixtures (2×2 spatial fil-
ter and filters with only one non-zero coefficient) using
second order statistics [3], Cichochi and Amari which
use NNs [4], and Miskin and MacKay which apply IT
methods (Ensemble Learning) to separate both instan-
taneous and convolutional mixtures of images [5].

In this paper, we extend a normalized kurtosis max-
imization algorithm (KMA), successfully used in sepa-
ration of instantaneous mixtures of speech signals, to



images. We provide motivation for the use of kurto-
sis and development of the algorithm, necessary ex-
tensions for image separation, as well as the examples
using standard test images.

2 Kurtosis-Based Separation Algo-
rithm

Most approaches to the problem of source separa-
tion assume statistical independence of the source sig-
nals. To capture statistical independence, Higher Or-
der Statistics (HOS) are required [6]. Many approaches
to BSS involve HOS such as cumulants and kurtosis [7]:

κx ≡
E

[

x4
]

{E [x2]}2
. (5)

Kurtosis is the classical measure of nongaussianity, i.e.

κx < 3 subgaussian (or platykurtic)
κx = 3 gaussian (or mesokurtic) (6)
κx > 3 supergaussian (or leptokurtic).

Motivation for this approach stems from the long-term
observation that many natural source signals of inter-
est (such as speech) have kurtosis lower than their
instantaneous mixtures [7]. This observation can be
used for separation as follows. Assuming x is of zero
mean and unit variance, (5) simplifies to E

[

x4
]

. For
the instantaneous mixture xi = ai1s1 + ai2s2, with
−1 < ai1, ai2 < 1, we have κxi = a4

i1κs1+a4
i2κs2. With-

out loss of generality, we can assume that σ2
xi

= 1, this
implies a constraint on aij, i.e. E

[

x2
i

]

= a2
i1 + a2

i2 = 1.
It is not hard to show that the maxima of κxi are at the
points when one of the mixing coefficients is zero, and
the other one is either +1 or −1, i.e. xi = ±s1or ± s2

[8].
We may therefore iteratively construct a de-mixing

matrix based on maximizing the output kurtosis.
Mathematically,

W(n + 1) = W(n) + µ $ κy

= W(n) + µ







∂κy1
∂W11

∂κy1
∂W12

∂κy2
∂W21

∂κy2
∂W22







= W(n) + µC(n) (7)

where µ is the step size, $κy is the gradient of the kur-
tosis of the output signals with respect to the elements
of the separation matrix, κyi is the output kurtosis,
and C(n) is the correction matrix used in the update
rule. The complete algorithm is given in Fig. 1 where
σ̂2

i is an autoregressive (AR) estimate of the variance
(assuming zero mean) of xi, r̂12 is an AR estimate of

y(n) = W(n)x(n)
σ̂2

i (n) = λ2σ̂2
i (n − 1) + (1 − λ2)x2

i (n)
r̂12(n) = λ2r̂12(n − 1) + (1 − λ2)x1(n)x2(n)
αi = 4y3

i (n)
βi = −Wi1(n)r̂12(n)x1(n) − Wi2(n)σ̂2

2(n)x1(n)+
Wi1(n)σ̂2

1(n)x2(n) + Wi2(n)r̂12(n)x2(n)
γi =

[

W 2
i1(n)σ̂2

1(n) + 2Wi1(n)Wi2(n)r̂12(n)+
W 2

i2(n)σ̂2
2(n)

]−3

C(n) =
[

−α1β1γ1W12(n) α1β1γ1W11(n)
−α2β2γ2W22(n) α2β2γ2W21(n)

]

W(n + 1) = W(n) + µC(n)

Figure 1: Kurtosis maximization algorithm (KMA) for
speech separation.

the cross-correlation between x1 and x2, and λ is the
forgetting factor [9].

In order to examine the kurtosis of image data and
their mixtures, we assume two M × N source images
are mixed according to (2) to produce two M ×N mix-
ture images. Starting with the two mixture images (no
information regarding sources or mixing matrix is avail-
able), we reshape x1 and x2 into two, MN × 1 vectors
and examine (5). Experimental results have indicated
that in many instances, image signals (in vector form)
are sub-Gaussian and their instantaneous mixtures are
lower than the individual source signals. Thus, we can
apply (7) to the reshaped vectors x1 and x2 as one-
dimensional signals. The resulting two MN ×1 output
signal (vectors) are reshaped back into two M ×N out-
put images.

3 Normalizing the HOS-Based Image
Separation Algorithm

In practice with images, KMA often produces large,
unnatural contrast variations in the separated output
images as was observed in previous work with KMA
and speech signals[9]. Analysis of these variations led
to the observation that µ is a critical parameter that
affects the performance of KMA, since the correction
matrix, C(n) often changes by “large” amounts. Note
that in this application, the correction matrix is af-
fected by the amplitude of the image data, which varies
considerably across pixels. We therefore utilize four
normalization methods:

1. Standardize the sample data of the mixtures

2. Replace the fixed step size, µ with the normalized
step size

µ(n) =
µ̃

||C(n)||F
. (8)



where µ̃ is the normalized step size and

||C(n)||F =

√

√

√

√

L
∑

i=1

L
∑

j=1

|Cij(n)|2 (9)

3. Set the diagonal parameters, Wii = 1 in the cor-
rection matrix to fix the arbitrary scale

4. Linearly stretch the output image data to fill the
entire dynamic range using a piece-wise linear gra-
dation function such as

h(p) =







0, if f(p) < u1

G − 1, if f(p) > u2
f(p)−u1
u2−u1

(G − 1), if u1 ≤ f(p) ≤ u2

(10)

where [u1, u2] is the gray value interval of one
separated output image, and [0, G− 1] is the full
gray value interval [10]. The functions f(p) and
h(p) are the value functions for the image point
p = (m, n) in the separated and stretched images,
respectively.

The following three observations were made: 1)
large, unnatural contrast variations were reduced (in-
formal observation) in the normalized cases, 2) better
separation performance was achieved (informal obser-
vation and calculated separation ratios) in the normal-
ized cases, and 3) two distinct and fully separated im-
ages were produced in the normalized cases more often
than in the unnormalized cases where often only one
image was separated.

4 Simulation
In this section, the performance of the Normalized

Kurtosis Maximization Algorithm (NKMA) is demon-
strated using two separation examples (case I and case
II). Here the mixing matrices are randomly chosen, and
the parameter set used in the experiments is listed in
Table 1.
4.1 Case I

Two images, “Lena” and “Lynda” (original images
are at the top in Fig. 2) with κs1,2 = 1.6305, 2.2561
(respectively), are mixed with

A =
[

0.5553 0.4447
0.3864 0.6154

]

, (11)

The images mixtures (middle images in Fig. 2) have
kurtosis values of κx1,2 = 1.5092, 1.6892 (respectively),
verifying the assumption on mixed image signals hav-
ing lower kurtosis.

After reshaping the mixture images to vectors, run-
ning them through the NKMA, and reshaping back to

Table 1: Simulation Parameters.

Parameter Value
Normalized 0.0001
step-size, µ̃
Forgetting 0.9995
factor, λ
Separation

Initialization W(0) =
[

1.0 0.1
0.1 1.0

]

Matrix
Initial r̂12(0) = 0.01,
moment σ̂1(0) = 0.01,
estimates σ̂2(0) = 0.01

the original image dimensions, we can see very good
separation. The Signal-to-Interference Improvement
(SIRI) as defined in [9] is measured to be 42dB and
24dB respectively for two separated images (bottom
images in Fig. 2)).

4.2 Case II
In this example, “APC” and “Peppers” images, with

κs1,2 = 1.4058, 1.8024 (respectively), are mixed with
(11). The kurtosis values of the two mixtures are
κx1,2 = 1.4259, 1.55 (respectively). Note here that one
mixture violates the critical assumption and as a re-
sult, only one source (Image 2) is fully separated with
a measured SIRI of 40.55dB as can be seen in Fig. 3.
The other output (Image 1) shows no separation and
has a measured SIRI of 6.28dB.

During both experiments, we have noted that the
performance of NKMA as applied to image mixtures,
is very sensitive to the normalized step size, µ̃. For dif-
ferent pairs of image mixtures, the optimal normalized
step size, µ̃ ranges in value between 0.0001 and 0.001.
Even for the same image pair, the best SIRIs for each
image may be achieved with different step sizes. As
in case II, if the mixtures are processed through two
parallel NKMA with two different properly chosen µ̃,
the SIRI can exceed 60dB in both separations. This
thought to be due to the crude instantaneous estimate
of the stochastic gradient of image data.

5 Conclusions

In this paper, we have extended a kurtosis maxi-
mization algorithm, successfully used in blind separa-
tion of instantaneous mixtures of speech signals, to im-
ages. The key features of the algorithm are its simplic-
ity and performance as demonstrated by the examples.



Figure 2: “Lena” and “Lynda” image separation re-
sults.
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