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bstract

We present a computationally efficient
method of separating mixed speech signals
using a recursive adaptive gradient descent
technique. The cost function is designed
to maximize the kurtosis of the output
(separated) signals. The choice of kurto-
sis maximization as an objective function
(which acts as a measure of separation)
is supported by investigation and analysis
of spherically invariant random processes
(SIRP’s) [6].

Introduction

The problem of separation of speech sig-
nals is considered. Making some mild as-
sumptions on the statistics of the voice sig-
nals we use higher order statistics to sep-
arate the voices. The use of higher-order
statistics is not new to the source separa-
tion problem (see [1], [5], for example). But,
many of these methods are applied to dig-
ital communications signals which belong
to a different statistical class (e. g. sub-
Gaussian) ! than speech signals (super-
Gaussian).

A fundamental idea of many blind sep-
aration and equalization schemes in digi-
tal communications makes note that the
sum of sub-Gaussian processes (as occurs
with mixing and intersymbol interference)
results in a process that “looks more” Gaus-
sian than the originals. [3] includes an ex-
cellent discussion of measures of Gaussian-
ity. With such a measure, one constructs
a cost function, and associated adaptive
gradient descent algorithm which minimizes
this Gaussianity measure resulting in source
separation or intersymbol interference re-
duction. A common measure which ap-
pears quite often is kurtosis, which is de-
fined for a zero mean random process X as
kx = E{z*} /{E {2*}}* Kurtosis relates to
the Constant Modulus Algorithm (CMA)

IThe term sub-Gaussian (super-Gaussian) is
used to denote processes having a kurtosis less
(more) than the kurtosis of a Gaussian.

[4] used for blind equalization. Here, we
modify a CMA-based source separation al-
gorithm [2] by adjusting for the differing
statistics (i.e. super-Gaussian) of voice sig-
nals.
Problem Setting

The generic two signal separation prob-
lem is shown in Figure 1. Two sources sy
and s; are mixed through mixing matrix A,
resulting in received signals xg and x;. The
mixing relation is denoted, X = AS where

X=[zo x1]"and S =1[sy s1]"
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Figure 1: Separation Block Diagram
The goal is to separate the sy and s; com-
ponents present in the mixed signals yield-
ingY =[5 1]’ through the use of matrix

Wt. Clearly, Wt = A'™" achieves the desired
result (assuming A is invertible) but, A is
typically unknown and W (or A) must be
estimated only using the mixture X.
Separation by Kurtosis

Communications Signals. An interesting
feature of kurtosis is now noted. Let ug
and u, be two independent, identically dis-
tribute (iid), zero mean random variables
with kurtosis xy. Let w = ug + u; and con-
sider ky. It can be shown that

Ky < 3 = Kw > Ky (sub-Gaussian)
Ky > 3 = Ky < Ky (super-Gaussian) (1)
Since digital communications signal are
typically considered to be sub-Gaussian,
the resulting mixture will have a higher kur-
tosis. Thus, a logical separation strategy is
to minimize the output kurtosis, which in
effect, is exactly what CMA does. In [2] an
iterative separation algorithm from digital
communications signals utilizing the CMA
error function is presented as

Wa = Wo— vy (6(W) (2
where p is the small adaptive stepsize, and
vwgzﬁ( ) denotes the gradient of ¢,

ZE{

The ﬁrst term is the CMA cost function,
while the second term associates a cost
to duplicating a source at the output Y.

1)} — In(det [W|) (3)



In light of (1), such kurtosis minimization
agrees with source separation.

Speech Signals. We adopt a kurtosis-
based strategy for separating speech signal
by recognizing that speech signal are super-
Gaussian. In light of (1), we choose the
adaptation objective to be kurtosis maxi-
mization. The adaptive algorithm becomes
(ignoring for the moment the desire to pre-
vent duplicate sources at output),

Wnrt = Wn+pvw (ky(W)  (4)
where p is the small adaptive stepsize, and
Vywky (W) denotes the gradient of the kur-
tosis of the outputs Y. For the two channel
case, performing the differentiation leads to
the update law
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where a; = 4(w;1x1 + wy;ws)® and
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and U% = E{y%}, Ug = E{?J%}, T2 =

E{y192}. Knowing the actual values of

0?05, and ryy a priori is not possible but

may be replaced by simple autoregressive
estimators. Also, an output scaling factor
must be incorporated into the algorithm,
since kurtosis is a scale invariant quantity.
The critical assumption here is that the
kurtosis of two mixed voice signals has a
lower kurtosis than the individual kurto-
sis values (as hinted at by (1)). However,
this may not be true. For speech sig-
nals there is no assurance different speak-
ers have identical distributions, nor are the
samples from any speaker temporally inde-
pendent. While lacking a proof, this criti-
cal assumption holds for all sampled speech
we've tested. This issue has been initially
investigate using SIRP’s are a good statis-
tical speech model. Under our analysis, the
critical assumption holds for a wide range
of parameters representing speech. While
lending credence to this approach, further
study is on-going.
Separation Example
The algorithm is demonstrated for
A — L0.72 0.34J
041 0.63 |’
so is a speaker with kg, = 13.9 and s is
a different speaker ks, = 13.1. The re-
ceived mixtures have kurtosis ky, = 11.4
and ky, = 8.8 verifying the critical assump-
tion. The severity of the mixing renders the
signals xy and z; unintelligible.

Figure 2 plots the power ratios of the
sgp and s; components in both yo and 1
(a measure of the separation at the out-
put). The achieved separations exceed
35dB. Qualitatively, listening to the result-
ing separated signals, the second speech
signal was virtually imperceptible.
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Figure 2: Example of Source Separation
Conclusion

We adopted ideas from the blind source sep-
aration/equalization problem and modified
them for use in speech separation, present-
ing an algorithm and its motivation using
the concept of kurtosis maximization with
leptokurtic signals. The algorithm, orig-
inally based on heuristics, appears more
plausible through use of analysis of SIRP’s
as statistical speech models. Continuing
work on the analysis of the SIRP model,
convergence analysis, and lowered compu-
tational complexity of the presented algo-
rithm are all avenues for continuing work.
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