
Transmission Parameter Estimation for an
Autoconfigurable Receiver123

 Raphael J. Lyman Qingsong Wang Phillip De Leon Stephen Horan
 (505) 646-3811 (505) 646-8862 (505) 646-3771 (505) 646-4856
 rlyman@nmsu.edu qwang@nmsu.edu pdeleon@nmsu.edu shoran@nmsu.edu

Klipsch School of Electrical and Computer Engineering
New Mexico State University

P.O. Box 30001, MSC 3-O
Las Cruces NM 88003-8001

Abstract—A satellite-to-ground communication link may
sometimes be interrupted by an unexpected event, causing
the satellite transponder to reset to an unknown state and
begin transmitting in a different mode, resulting in a loss of
data. We describe procedures to aid in reconfiguring the
ground-station receiver by determining the new
transmission parameters automatically from the received
signal itself. We discuss procedures based on the signal
statistics as well as on information about the data-frame
structure. Simulations show that the latter approach can
work for reasonably sized problems.

The task of reconfiguring the receiver for the new
parameters could be eased if the parameters could be
determined automatically from the received signal itself.
For example, data formats such as NRZ and Bi! have
distinctive statistical signatures [1]. Thus the data format,
as well as the data rate, could be determined by estimating
the power spectral density of the received signal. As we
shall see, there are also time-domain approaches to these
problems that offer simplicity and a method for calculating
an error bound.

 TABLE OF CONTENTS Some other parameters present more of a challenge. For

example, there is no statistical distinction between random
data formatted as NRZ-L and data formatted as NRZ-M.
Such a distinction can be made, though, if we make use of a
priori information regarding the frame structure of the
transmitted data. Even if the link-layer protocol is not
known at the ground-station receiver, if the number of
possible protocols is small, we can distinguish between
NRZ-L and NRZ-M by assuming that a particular one of
these data formats was used in the transmission. We then
demodulate accordingly and determine if the resulting data
“makes sense.”

...
1. INTRODUCTION1
2. USING THE SIGNAL STATISTICS2
3. PROBABILITY OF ERROR3
4. USING THE FRAME STRUCTURE.............4
5. ESTIMATION ALGORITHM......................5
6. SIMULATION AND RESULTS....................6
7. CONCLUSIONS...6
REFERENCES...7

1. INTRODUCTION In this paper, we apply this approach to a satellite-to-ground

link through the TDRSS Multiple-Access service [2].
Satellites using the Space Network services will generally
use either the Single Access (SA) service or the Multiple
Access (MA) service for their forward and return link
communications. The SA service may utilize Ka-Band,
K-Band or S-Band frequencies while the MA service uses
S-Band exclusively. The MA return service is a spread
spectrum service and supports data rates up to 300 kbps
through the original TDRS fleet and 3 Mbps on the newer
satellites. The return data channels can be rate 1/2

In order to demodulate a satellite-to-ground transmission
correctly, a ground-station receiver must have knowledge of
certain transmission parameters; e.g., data rate, data format,
details of error-correction coding, etc. Normally, these are
known ahead of time, but sometimes, when an unexpected
event occurs, the satellite transponder may reset to an
unknown state and begin transmitting data using a different
set of parameters. This can cause data to be lost until the
receiver operator determines that an event has occurred and
makes appropriate adjustments.

1 0-7803-8155-6/04/$17.00© 2004 IEEE
2 IEEEAC paper #1066, Version 2, Updated December 3, 2004
3 This project was funded by NASA’s Goddard Space Flight Center Grant #NAG5-13189.

 1

convolutionally encoded on the original TDRS fleet or
selectable between rate 1/2 and rate 1/3 on the newer
satellites. The same chip rate is used on the return link,
regardless of the convolutional rate or the underlying data
rate. The RF transmission is formatted as a typical I/Q
channel for QPSK signaling. At the ground station, the
signal is downconverted and despread prior to processing
the FEC-encoded data. In this paper, we assume that the
downconversion and despread operations have been
successfully completed since these are common to all MA
users regardless of the data rate or FEC method.

We develop frequency-domain and time-domain approaches
for determining the data rate and the basic data format, and
we compute a bound on the probability of an incorrect
decision. We also describe how other parameters may be
determined using data-structure information, and show by
simulation that this approach can work in the TDRSS MA
environment.

 2. USING THE SIGNAL STATISTICS
When examining a signal to determine the transmission
parameters, keeping the algorithm simple is very important.
For this reason, we wish to minimize the number of
assumptions we make about the received signal.
Fortunately, some parameters may be determined by
examining the signal statistics alone. Examples of this
include the data format and the data rate.

In the TDRSS MA service [2], allowable data formats
include non return to zero and biphase types (NRZ and
Bi!, see Figure 1) [1]. NRZ-L formatted data, for example,
responds to the logic “level” of the data, assigning one
signal level to a logic 1 and another signal level to a logic 0.
By contrast, Bi!-L assigns a signal-level transition to each
logic level. The transition for logic 1 is in the opposite
direction of the transition for logic 0.

0 1 0 1 1 0 0 1 0 1 1 1 0DATA

NRZ-L

NRZ-M

NRZ-S

BiPh-L

BiPh-M

BiPh-S

Figure 1 - Data Formats

NRZ-M and Bi!-M respond to a logic 1 or “mark.” For
NRZ-M, a logic 1 is indicated by a change in signal level

from the previous symbol. A logic 0 is indicated by no
change in signal level. For Bi!-M, a logic 1 is indicated
by a change in the direction of the signal-level transition
with respects to the previous symbol. NRZ-S and Bi!-S
are similar to NRZ-M and Bi!-M, except that they respond
to a logic 0 or “space,” instead of a logic 1.

In the Multiple Access service, the formatted symbols are
further modulated using direct-sequence spread spectrum,
but the chip rate and details of modulation are the same for
all data rates. Thus, we assume that the signal has been
despread using well-known code acquisition and tracking
procedures [3].

Note that, in contrast to NRZ, all Bi! formats guarantee a
signal-level transition during each symbol. For this reason,
the power spectral densities of the two format types are
distinct (see Figure 2). This suggests a frequency-domain
approach for determining the data format of the received
signal. We simply compute the periodogram of the signal
and compare it to the spectra in Figure 2. For example, we
note that the PSD of NRZ-formatted data has a negative
slope at f = 0, whereas Bi!-formatted data has a positive
slope there. If S[n] is the periodogram of the received
signal, we may approximate the slope of the PSD using the
forward difference S[1] – S[0] [4]. If this difference is
negative, we conclude that the data are NRZ formatted. A
positive difference indicates Bi!. The data rate could also
then be estimated by determining the frequencies of the
spectral nulls.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

−40

−30

−20

−10

0

10

S(
f)

f

NRZ
BiΦ

Figure 2 – Power Spectral Densities for Data Formats

Unfortunately, in order to obtain an accurate estimate of the
PSD using the periodogram, it is usually necessary to buffer
a long data record, and there is no convenient way to
estimate the probability that the data-format determination
procedure described above will yield an incorrect result.

To address these problems, we consider a time-domain
approach. For example, we may determine the data rate by
sampling the received signal at a rate much higher than the
greatest expected data rate. We then search the sampled

 2

signal for transitions in level. The shortest distance between
adjacent transitions we call Wmin. By examining Figure 1,
we see that if the data format is NRZ, then Wmin is almost
certainly the bit period. If the data format is Bi!, then Wmin
will be one-half the bit period.

 " # " # " #.NRZNRZ|dBidBiNRZ PPP !$!% (4)

We see from (4) and (2) that the error probability depends
on the a priori probability that the transmitted sequence was
formatted as NRZ. Since this probability may not be
known, we can bound the error probability by noting that
P(NRZ) & 1. Making use of (4), (3) and (2) we have

To determine whether the signal is NRZ or Bi!, we note
from Figure 1 that for Bi!, the longest time between signal-
level transitions is 2Wmin. Thus, if our sampled signal
contains a segment of length 3Wmin without a transition,
then it is certainly NRZ (see Figure 3).

 " # " #.NRZ|dBi!& PEP (5)

If the received data are formatted as NRZ, the probability
that we will decide in favor of Bi! is just the probability
that the transmitted data contain no sequence of three
consecutive like symbols; i.e., no “111” and no “000”. The
reason for this is that if such a sequence did occur, it would
cause NRZ-L formatted data to hold a signal level for 3Wmin
or longer.

NRZ “Giveaway”

3Wmin

Wmin

 Figure 3 – Confirmed NRZ Waveform
The same probability holds for NRZ-M and NRZ-S as well.
 To see this, note from Figure 1 that an NRZ-M waveform
may be obtained by first differentially encoding the data,
and then formatting the result as NRZ-L. If a random
sequence is differentially encoded, then the result is also
random, and the probability of three consecutive like
symbols is unchanged. In the case of NRZ-S, the original
data must be inverted before differential encoding, but if a
logic 1 is as likely to occur as a logic 0, the probabilities
will again not be changed. We will make further use of
these observations in the following section.

If we examine our sampled signal and find that there is no
segment of length greater than 2Wmin without a transition,
then we conclude that it is formatted as Bi!. This
conclusion may be in error for certain transmitted data
sequences. For example, if the transmitted sequence is
“11001011” formatted as NRZ, Wmin will be equal to one bit
interval, and the time between signal-level transitions will
always be less than 3Wmin. This is because the data we are
transmitting happens to contain no sequence of three
consecutive like bits; i.e., “111” or “000”.

Suppose that the transmitted data consist of N binary
symbols, {b1, b2, ', bN}. Let us use the symbol NAn to
mean the event that bn, bn-1, and bn-2 are not all alike. Then

 3. PROBABILITY OF ERROR
To compute the probability that the above procedure results
in an incorrect decision, we note that the error event may be
written as

 (1) " # " ,dBiNRZdNRZBi! !%(%$E

 (6) " # .
3

NANRZ|dBi)
*
+

,
-
.
$

$! !
N

n nPP
#

#

where, e.g., “Bi!%dNRZ” means the event that Bi! data
were transmitted, but we decided that the signal was
formatted as NRZ. The two error types in (1) are mutually
exclusive so from elementary probability we have [5]

 (2) " # " # " #.dBiNRZdNRZBi !%/%!$ PPEP

The events {NAn} are not independent. For example, if 4 &
n & N, NAn is not independent from NAn-1, because the
sequences {bn-2, bn-1, bn} and {bn-3, bn-2, bn-1} have the bits
bn-2 and bn-1 in common. Thus, we evaluate the joint
probability in (6) in terms of conditional probabilities [5].
For N 0 5, this yields

" #
" # .

5 2
NA1NA|NA

3NA4NA
3

NA

)
*
+,

-
.

)
*
+

,
-
.

1
$ 2

%23

%$
$

N

n nnnP

P
N

n nP !

 (7)

If Bi! data are transmitted, then from Figure 1 we can see
that, neglecting noise-induced errors, the signal will never
contain a segment of length 3Wmin without a transition in
level. Thus, we will never decide that NRZ was transmitted
when the data are in fact formatted as Bi!,
 (3) " .0dNRZBi $%!P

It is easy to show that P(NA4%NA3) = 5/8. The conditional
probabilities are given by

Also,

 3

 " # .5,5
4

2
NA1NA|NA Nn

nnnP &&$
2

%2 (8)

Substituting these values into (7), and making use of (6) and
(5), we have

 " # " #" # .
4

5
4

8
5 2

&
N

EP (9)

The bound in (9) may be used to show, for example, that an
error probability P(E) & .0001 may be achieved if the
transmitted data are N 0 44 bits long.

Recall that at the receiver, we sample a segment of the
received signal in order to determine the data format and the
data rate. Suppose that, after doing the P(E) computations
as above, we determine that we must sample enough of the
signal to include at least N bits of transmitted data. How
many seconds of the received signal does this represent?
Since we do not yet know the data format or rate, we
consider a minimum allowable data rate. For the Multiple
Access service, the minimum data rate is 100 bps. If data
transmitted at this rate are formatted as NRZ, then we
expect Wmin = 1/100, since the minimum pulse width for
NRZ is just the bit interval. If we must have N 0 49 for
P(E) & .0001, then we should sample a segment about .5 sec
long.

In practice, the low data rate 100 bps is seldom used. If it is
reasonable to assume a higher minimum data rate, the
length of the sampled segment could be reduced.

 4. USING THE FRAME STRUCTURE
We mentioned previously that an NRZ-M waveform may be
obtained by first differentially encoding the data, and then
formatting the result as NRZ-L. Data may be formatted as
Bi!-M in a completely analogous manner. For NRZ-S or
Bi!-S, the original data sequence is inverted before
differential encoding. From this we see that once the format
type, NRZ or Bi!, is determined, the signal may be
demodulated as if it were NRZ-L or Bi!-L. Then the
format suffix of the signal may be determined by whether
the resulting sequence is differentially encoded.

As discussed previously, NRZ and Bi! may be
distinguished using a statistical approach. But there is no
statistical difference between a binary sequence before and
after differential encoding. A distinction can be made,
though, if we know something beforehand about the data
being encoded. For example, all of the data-link protocols
most commonly used for space-to-ground transmission
employ known binary sequences or sync words for proper
frame synchronization [1]. If we differentially decode a
received sequence, and if the decoded sequence has an
occurrence of one of these sync words, then it is highly

likely that the transmitted sequence was differentially
encoded.

A similar approach may be used to determine the details of
the convolutional encoding that was applied. For example,
if Viterbi decoding of a rate-½ convolutional code is
applied to a received signal, and if a recognized sync word
is found in the resulting sequence, we conclude that the
transmitted signal was coded in this way.

The line code and convolutional encoding may be
determined jointly by trying all the possibilities. For
example, suppose a received signal is known to be either L-
or M-form modulation, and either uncoded or rate-½
encoded. We form the following four sequences: 1) the
original sequence unchanged, 2) the original sequence after
differential decoding, 3) the original sequence after Viterbi
decoding of the convolutional code and 4) the original
sequence after differential decoding and Viterbi decoding.
Note that because convolutional encoding is applied before
modulation at the transmitter, the operations are decoded in
opposite order at the receiver to obtain sequence 4. The line
code and convolutional encoding may be determined by
searching each of the four sequences for sync word
occurrences.

This approach provides a simple means of determining the
type of modulation and convolutional encoding that have
been applied to a received signal. A problem occurs,
though, if one of the possible sync words is very short. For
example, the HDLC flag byte, “01111110”, is only eight
bits long [6]. On average, we would expect this sequence to
appear about once every 32 bytes in a random data stream.
Thus, if a sequence is sufficiently long, it may contain a
spurious occurrence of the flag byte even if it has not been
properly decoded.

The problem may be addressed by handling HDLC
separately. After forming the various decoded sequences
from our received signal we test each to determine if it
contains a valid HDLC frame. If one of them does, then we
conclude that this is the correctly decoded sequence.
Otherwise, we proceed to search for the occurrence of a
sync word other than the flag byte.

It is possible to determine whether a data sequence contains
a valid HDLC frame by using more detailed knowledge of
the HDLC frame format. Specifically, error detection in
HDLC is accomplished by appending a 16-bit frame-check
sequence to the body of the frame [6]. Then a bit-stuffing
operation is performed before the flag byte is attached to the
beginning and end of the frame.

Bit stuffing prevents the spurious occurrence of the flag
byte within the body of the HDLC frame. The flag byte
contains a sequence of six consecutive ones. Thus, each
time a sequence of five consecutive ones occurs in the
frame body, a zero is stuffed. For example, “0111111”

 4

becomes “01111101” and “0111110” becomes “01111100”.
 This operation is easily reversed at the receiver. Note that
bit stuffing affects the frame-check sequence as well as the
user data.

 5

To determine if a data sequence contains a valid HDLC
frame, it is searched for two consecutive flag bytes. The
data between these bytes is then destuffed and checked for
the presence of a properly computed frame-check sequence.
 If the FCS is correct, then the sequence is declared to be
valid HDLC data. Also, note that during idle periods, when
there are no user data to transmit, a continuous sequence of
flag bytes is transmitted instead. Thus, a sequence is also
declared as valid HDLC data if it contains several
consecutive flag bytes with no user data.

 5. ESTIMATION ALGORITHM

To test the approach discussed in the previous section, we
have developed an algorithm that uses frame-structure
information to recover transmission parameters for a data
sequence that might be transmitted on a space-to-ground
link over the Multiple Access service. The transmission
parameters of interest are the data-format suffix (-L, -M or
-S), the convolutional code rate, the node synchronization,
and the inversion pattern. These are some of the parameters
required by the ground-station receiver in order to correctly
demodulate and decode the received signal. The data rate
and the format type (NRZ or Bi!), which were discussed in
Section 2, are assumed to have been estimated already.

As discussed in the previous section, the data-format suffix
may be determined by demodulating the received signal as
if it were NRZ-L or Bi!-L, and then determining if the
resulting sequence is differentially encoded. For the
Multiple Access service, data may be transmitted without
error-correction coding, or with convolutional encoding at
rate ½ or rate 1/3 [2]. In practice, rate-1/3 encoding is rare,
so we check only for the possibility of uncoded or rate-½
encoded data.

To decode a data sequence properly, it is also necessary to
know the generator polynomials that were used by the
convolutional encoder, but since only one set of
polynomials is specified for each coding rate used in the
Multiple Access service, it was not necessary to make a
separate determination of these.

If a sequence has been convolutionally encoded, though, the
Viterbi decoder must know which bits were produced by
each polynomial. Figure 4 shows the operation of the
convolutional encoder. Unencoded bits are clocked into a
seven-bit shift register from the left. These seven bits are
then combined using modulo-2 adders. The adders shown
above the shift register represent the operation of
polynomial “G1”, and the adders below represent the
polynomial “G2”. Bits produced by G1 and G2 are clocked

out alternately onto the output stream. For a rate-½
encoder, two bits are clocked out every time one bit is
clocked in. Note that often the output from G2 is inverted,
as shown in the figure.

G2

G1

 Figure 4 – Convolutional Encoder

It is clear from the above that the data presented to the
Viterbi decoder consist of a sequence which alternates
between G1 bits and G2 bits. When we begin to
demodulate the data, we will not know if the first bit we
receive is from G1 or G2. The process of determining this
is called node synchronization.

As was mentioned previously, Figure 4 shows that the G2
bits are inverted before they are clocked out. This is done
to avoid long strings of 1’s or 0’s in the output stream. It is
typical in convolutional encoding to invert the bits from one
or more polynomials. The specification for which
polynomials are to be inverted we call the inversion pattern.
It is of course necessary to know this in order to decode the
signal properly.

The algorithm that we have developed estimates all of these
parameters using frame-structure information, as discussed
in the previous section. We assume that the satellite
transponder transmits data using either HDLC [6] or the
CCSDS TM data-link protocol [7]. We decode the received
data sequence under all the possible sets of assumptions
regarding the values of the parameters we are trying to
estimate. The various output sequences are stored in a
table, and then each sequence is checked to see if it
conforms to one of the possible frame formats. Such a
sequence is assumed to have been decoded correctly. Thus,
we conclude that the parameter values used in decoding it
are correct, and these become our estimates for
reconfiguring the receiver.

Our algorithm recognizes a decoded sequence as
conforming to the TM frame format if the sequence contains
an appropriate sync word. One of these has the hex
designation 1ACFFC1D. TM uses other longer sync words
for data that have been turbo coded. Because the HDLC
flag byte is so short, we use more detailed information
about its frame structure, as discussed previously, in
determining whether a decoded sequence was generated
under this protocol.

 6. SIMULATION AND RESULTS

We have developed a Matlab simulation that exercises the
algorithm described in the previous section. Under each of
the possible frame structures, the simulator generates 1000
random data sequences encoded under each of the possible
assumptions about the transmission parameters. Each time
a data sequence is generated, it is fed to the parameter-
estimation algorithm. The estimates returned by the
algorithm are compared with the assumptions used in
encoding the sequence. If one or more parameters were
estimated incorrectly, an error is recorded, and the data
sequence giving rise to the error is logged.

The random data sequences were generated using simple
models of the assumed protocols. When the CCSDS TM
protocol was assumed, the sequences consisted of five
frames, each with 200 bits of random user data prefixed by
an appropriate sync word. The first frame of each sequence
is truncated at a random point, so that the estimation
algorithm does not know the starting position of the data.
The HDLC frames were generated similarly, except that a
frame-check sequence is appended to the user data, and then
a bit-stuffing operation is applied, as described in Section 4,
before the flag byte is attached.

When an error occurs in our simulation, we use the logged
sequence to analyze the cause. One problem we have
discovered relates to the Viterbi decoder. Because
convolutional encoding is intended to correct errors, if two
input sequences are very similar, they may in fact be
decoded to the same sequence. In our initial simulation
runs, we found that sequences encoded under very different
parameter assumptions sometimes in fact produced very
similar output, close enough that the output of the Viterbi
decoder under the two cases was the same. This meant that
we could not use these output sequences to distinguish
which set of parameter assumptions was correct. Because
the two sets of parameters produce very similar output, if
the receiver is configured using the wrong set of
parameters, it may still decode the incoming signal correctly
most of the time, but will be less robust to the types of bit
errors against which convolutional encoding was meant to
provide protection.

We were able to alleviate this problem by using the average
value of the final state metric from the Viterbi decoder as a
tiebreaker. The sequence with the highest average metric
was considered to have been decoded correctly. With this
modification in place, repeated runs of the simulator have
resulted in no set of 1000 repetitions with more than one
error. Recall that each set of repetitions is made under a
specific assumption regarding the frame structure and the
values of the transmission parameters. Under most sets of
assumptions, 1000 repetitions will result in no errors. This
is especially true for frame structures with long sync words,
including all of the TM sync words. Thus, the total error

rate is less than .001. We continue to investigate the
reasons for the few residual errors.

 7. CONCLUSIONS

Our simulation results show that using frame-structure
information, as describe in Section 4, is a viable approach
for estimating transmission parameters that do not have a
clear statistical signature. We note that we had more
success in the estimation task when the CCSDS TM
protocol was employed, than when HDLC was used. This
is because TM frames include long sync words that are
unlikely to occur spuriously in invalid frames. This makes
it easier to recognize a correctly decoded sequence.

We were aided in our task by the fact that the number of
possible transmission-parameter values was small; e.g., only
one rate for the convolutional encoding. Larger numbers of
parameters, and larger numbers of possible values for each
parameter, would have made it necessary to produce a much
greater number of decoded sequences to examine. This
would have made the computational task more burdensome,
of course, but because we are considering the receiver at the
ground station, we expect that sufficient computing power
will be available. We note that the decoding task described
here lends itself well to parallel computing.

The more serious problem is that large numbers of decoded
sequences may make more difficult the problem of deciding
which one of them was decoded correctly. An example of
this is the Viterbi decoding problem discussed in the
previous section.

Also, it is clear that in general, deciding parameter values
from statistics, as discussed in Section 2, is preferable to
using frame-structure information. This is because the
effects of various transmission parameters on the final
output sequence are highly coupled, and each parameter
adds a great deal of complexity to the problem. Note from
Section 2 that the task of estimating the data rate and data
format type, which uses only statistics, is completely
independent from the estimation of the other parameters. In
Section 2, the estimation procedure for each parameter is
simple, and only slightly coupled with the other.

For this reason, it is worthwhile to try to discover statistical
approaches for other parameters as well. A likely
possibility is convolutional encoding, since this may be
viewed, in a sense, as a filtering operation, and because it is
intended to introduce redundancy.

When using frame-structure information, there is a tradeoff
between the amount of such information you use and the
complexity of the resulting algorithm. In order to make our
algorithm more generally applicable, we used as few details
of the data-link protocols as possible in performing our
estimation task. We hoped only to use sync-word
information, and though this approach did not prove to be

 6

Qingsong Wang holds a Master’s degree in Physics from
Bejing Normal University. He is currently pursuing his Ph.D.
degree in electrical engineering from New Mexico State
University.

sufficient, we broke from it only when necessary. Our
handling of HDLC is an example of this.

As the number of parameters to be estimated using frame–
structure information increases, it is likely that the size and
complexity of the estimation algorithms will grow quickly if
we wish to keep the error rate low. In such a case, it may be
worthwhile to reduce the number of possible parameter
values that are tested. These values would be the ones that
are used most commonly, and would result in a correct
determination most of the time.

Phillip De Leon received the B.S. Electrical Engineering

and the B.A. in Mathematics from
the University of Texas at Austin, in
1989 and 1990 respectively and the
M.S. and Ph.D. degrees in
Electrical Engineering from the
University of Colorado at Boulder,
in 1992 and 1995 respectively.
Previously he worked at AT&T
(and later Lucent Technologies)
Bell Laboratories in Murray Hill,
N.J. Currently, he serves as an

Associate Professor in the Klipsch School, Director of the
Advanced Speech and Audio Processing Laboratory, and
Associate Director of the Center for Space Telemetering
and Telecommunications at NMSU. His research interests
are in adaptive-, multirate-, real-time-, and speech-signal
processing as well as wireless communications. Dr. De
Leon is a senior member of IEEE.

 REFERENCES
[1] S. Horan, Introduction to PCM Telemetering Systems, 2nd
ed., Boca Raton, FL: CRC Press, 2002.

[2] Space Network Users’ Guide, Rev. 8, Mission Services
Program Office, NASA Goddard Space Flight Center,
Greenbelt, Maryland, 2002.

[3] R. L. Peterson, R. E. Ziemer, and D. E. Borth,
Introduction to Spread-Spectrum Communications,
Englewood Cliffs, NJ: Prentice-Hall, 1995

[4] P. DeLeon, Q. Wang, S. Horan, and R. Lyman, “A Design
for Satellite Ground Station Receiver Autoconfiguration,”
International Telemetering Conference, Las Vegas,
October 2003.

Stephen Horan (S’79 - M’83 - SM’96) received an A.B.
degree in Physics from Franklin
and Marshall College in 1976, an
M.S. degree in astronomy in 1979,
the M.S.E.E degree in 1981, and
the Ph.D. degree in electrical
engineering in 1984 all from New
Mexico State University. From
1984 through 1986, he was a
software engineer and systems
engineer with Space
Communications Company at the

NASA White Sands Ground Terminal where he was
involved with the software maintenance and system
specification for satellite command and telemetry systems
and operator interfaces. In 1986 he joined the faculty at
New Mexico State University where he is presently a
Professor and holder of the Frank Carden Chair in
Telemetering and Telecommunications in the Klipsch
School of Electrical and Computer Engineering. His
research and teaching interests are in space
communications and telemetry systems. Dr. Horan is the
author of Introduction to PCM Telemetering Systems
published by CRC Press. He is also a Senior Member of
both the IEEE and AIAA, and a member of Eta Kappa Nu.

[5] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, 3rd ed., New York: McGraw-Hill, 1991.

[6] U. D. Black, Data Link Protocols, Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[7] TM Synchronization and Channel Coding, CCSDS
130.0-R-1, Consultative Committee for Space Data Systems,
2002.

BIOGRAPHIES

Raphael J. Lyman holds a Ph.D. in electrical engineering

from the University of Florida,
Gainesville. He is currently an
assistant professor in the Klipsch
School of Electrical and Computer
Engineering, New Mexico State
University, Las Cruces. His teaching
and research interests include
satellite communications, mobile
radio, signal processing and
estimation theory.

 7

