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Abstract—A satellite-to-ground communication link may 
sometimes be interrupted by an unexpected event, causing 
the satellite transponder to reset to an unknown state and 
begin transmitting in a different mode, resulting in a loss of 
data.  We describe procedures to aid in reconfiguring the 
ground-station receiver by determining the new 
transmission parameters automatically from the received 
signal itself.  We discuss procedures based on the signal 
statistics as well as on information about the data-frame 
structure.  Simulations show that the latter approach can 
work for reasonably sized problems. 

 
The task of reconfiguring the receiver for the new 
parameters could be eased if the parameters could be 
determined automatically from the received signal itself.  
For example, data formats such as NRZ and Bi! have 
distinctive statistical signatures [1].  Thus the data format, 
as well as the data rate, could be determined by estimating 
the power spectral density of the received signal.  As we 
shall see, there are also time-domain approaches to these 
problems that offer simplicity and a method for calculating 
an error bound. 

  
 TABLE OF CONTENTS Some other parameters present more of a challenge.  For 

example, there is no statistical distinction between random 
data formatted as NRZ-L and data formatted as NRZ-M.  
Such a distinction can be made, though, if we make use of a 
priori information regarding the frame structure of the 
transmitted data.  Even if the link-layer protocol is not 
known at the ground-station receiver, if the number of 
possible protocols is small, we can distinguish between 
NRZ-L and NRZ-M by assuming that a particular one of 
these data formats was used in the transmission.  We then 
demodulate accordingly and determine if the resulting data 
“makes sense.” 
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1. INTRODUCTION  In this paper, we apply this approach to a satellite-to-ground 

link through the TDRSS Multiple-Access service [2].  
Satellites using the Space Network services will generally 
use either the Single Access (SA) service or the Multiple 
Access (MA) service for their forward and return link 
communications.  The SA service may utilize Ka-Band, 
K-Band or S-Band frequencies while the MA service uses 
S-Band exclusively. The MA return service is a spread 
spectrum service and supports data rates up to 300 kbps 
through the original TDRS fleet and 3 Mbps on the newer 
satellites.  The return data channels can be rate 1/2 

In order to demodulate a satellite-to-ground transmission 
correctly, a ground-station receiver must have knowledge of 
certain transmission parameters; e.g., data rate, data format, 
details of error-correction coding, etc.  Normally, these are 
known ahead of time, but sometimes, when an unexpected 
event occurs, the satellite transponder may reset to an 
unknown state and begin transmitting data using a different 
set of parameters.  This can cause data to be lost until the 
receiver operator determines that an event has occurred and 
makes appropriate adjustments. 
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convolutionally encoded on the original TDRS fleet or 
selectable between rate 1/2 and rate 1/3 on the newer 
satellites.  The same chip rate is used on the return link, 
regardless of the convolutional rate or the underlying data 
rate.  The RF transmission is formatted as a typical I/Q 
channel for QPSK signaling.  At the ground station, the 
signal is downconverted and despread prior to processing 
the FEC-encoded data.  In this paper, we assume that the 
downconversion and despread operations have been 
successfully completed since these are common to all MA 
users regardless of the data rate or FEC method. 
 
We develop frequency-domain and time-domain approaches 
for determining the data rate and the basic data format, and 
we compute a bound on the probability of an incorrect 
decision. We also describe how other parameters may be 
determined using data-structure information, and show by 
simulation that this approach can work in the TDRSS MA 
environment. 
 
 2. USING THE SIGNAL STATISTICS 
When examining a signal to determine the transmission 
parameters, keeping the algorithm simple is very important. 
For this reason, we wish to minimize the number of 
assumptions we make about the received signal.  
Fortunately, some parameters may be determined by 
examining the signal statistics alone.  Examples of this 
include the data format and the data rate. 
 
In the TDRSS MA service [2], allowable data formats 
include non return to zero and biphase types (NRZ and 
Bi!, see Figure 1) [1].  NRZ-L formatted data, for example, 
responds to the logic “level” of the data, assigning one 
signal level to a logic 1 and another signal level to a logic 0. 
By contrast, Bi!-L assigns a signal-level transition to each 
logic level.  The transition for logic 1 is in the opposite 
direction of the transition for logic 0. 
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Figure 1 - Data Formats 

 
NRZ-M and Bi!-M respond to a logic 1 or “mark.”  For 
NRZ-M, a logic 1 is indicated by a change in signal level 

from the previous symbol.  A logic 0 is indicated by no 
change in signal level.  For  Bi!-M, a logic 1 is indicated 
by a change in the direction of the signal-level transition 
with respects to the previous symbol.  NRZ-S and Bi!-S 
are similar to NRZ-M and Bi!-M, except that they respond 
to a logic 0 or “space,” instead of a logic 1. 
 
In the Multiple Access service, the formatted symbols are 
further modulated using direct-sequence spread spectrum, 
but the chip rate and details of modulation are the same for 
all data rates.  Thus, we assume that the signal has been 
despread using well-known code acquisition and tracking 
procedures [3]. 
 
Note that, in contrast to NRZ, all Bi! formats guarantee a 
signal-level transition during each symbol.  For this reason, 
the power spectral densities of the two format types are 
distinct (see Figure 2).  This suggests a frequency-domain 
approach for determining the data format of the received 
signal.  We simply compute the periodogram of the signal 
and compare it to the spectra in Figure 2.  For example, we 
note that the PSD of NRZ-formatted data has a negative 
slope at f = 0, whereas Bi!-formatted data has a positive 
slope there.  If S[n] is the periodogram of the received 
signal, we may approximate the slope of the PSD using the 
forward difference S[1] – S[0] [4].  If this difference is 
negative, we conclude that the data are NRZ formatted.  A 
positive difference indicates Bi!.  The data rate could also 
then be estimated by determining the frequencies of the 
spectral nulls. 
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Figure 2 – Power Spectral Densities for Data Formats 

 
Unfortunately, in order to obtain an accurate estimate of the 
PSD using the periodogram, it is usually necessary to buffer 
a long data record, and there is no convenient way to 
estimate the probability that the data-format determination 
procedure described above will yield an incorrect result. 
 
To address these problems, we consider a time-domain 
approach.  For example, we may determine the data rate by 
sampling the received signal at a rate much higher than the 
greatest expected data rate.  We then search the sampled 
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signal for transitions in level.  The shortest distance between 
adjacent transitions we call Wmin.  By examining Figure 1, 
we see that if the data format is NRZ, then Wmin is almost 
certainly the bit period.  If the data format is Bi!, then Wmin 
will be one-half the bit period. 

 
 " # " # " #.NRZNRZ|dBidBiNRZ PPP !$!%  (4) 
 
We see from (4) and (2) that the error probability depends 
on the a priori probability that the transmitted sequence was 
formatted as NRZ.  Since this probability may not be 
known, we can bound the error probability by noting that 
P(NRZ) & 1.  Making use of  (4), (3) and (2) we have 

 
To determine whether the signal is NRZ or Bi!, we note 
from Figure 1 that for Bi!, the longest time between signal-
level transitions is 2Wmin.  Thus, if our sampled signal 
contains a segment of length 3Wmin without a transition, 
then it is certainly NRZ (see Figure 3). 

 
 " # " #.NRZ|dBi!& PEP  (5) 
  
If the received data are formatted as NRZ, the probability 
that we will decide in favor of Bi! is just the probability 
that the transmitted data contain no sequence of three 
consecutive like symbols; i.e., no “111” and no “000”.  The 
reason for this is that if such a sequence did occur, it would 
cause NRZ-L formatted data to hold a signal level for 3Wmin 
or longer. 

 

NRZ “Giveaway”

3Wmin

Wmin 

 
 
 
 
 

 
 Figure 3 – Confirmed NRZ Waveform 
The same probability holds for NRZ-M and NRZ-S as well. 
 To see this, note from Figure 1 that an NRZ-M waveform 
may be obtained by first differentially encoding the data, 
and then formatting the result as NRZ-L.  If a random 
sequence is differentially encoded, then the result is also 
random, and the probability of three consecutive like 
symbols is unchanged.  In the case of NRZ-S, the original 
data must be inverted before differential encoding, but if a 
logic 1 is as likely to occur as a logic 0, the probabilities 
will again not be changed.  We will make further use of 
these observations in the following section. 

 
If we examine our sampled signal and find that there is no 
segment of length greater than 2Wmin without a transition, 
then we conclude that it is formatted as Bi!.  This 
conclusion may be in error for certain transmitted data 
sequences.  For example, if the transmitted sequence is  
“11001011” formatted as NRZ, Wmin will be equal to one bit 
interval, and the time between signal-level transitions will 
always be less than 3Wmin.  This is because the data we are 
transmitting happens to contain no sequence of three 
consecutive like bits; i.e., “111” or “000”. 

  
Suppose that the transmitted data consist of N binary 
symbols, {b1, b2, ', bN}.  Let us use the symbol NAn to 
mean the event that bn, bn-1, and bn-2 are not all alike.  Then 

 3. PROBABILITY OF ERROR 
To compute the probability that the above procedure results 
in an incorrect decision, we note that the error event may be 
written as 
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where, e.g., “Bi!%dNRZ” means the event that Bi! data 
were transmitted, but we decided that the signal was 
formatted as NRZ.  The two error types in (1) are mutually 
exclusive so from elementary probability we have [5] 
 
  (2) " # " # " #.dBiNRZdNRZBi !%/%!$ PPEP

The events {NAn} are not independent.  For example, if 4 & 
n & N, NAn is not independent from NAn-1, because the 
sequences {bn-2, bn-1, bn} and {bn-3, bn-2, bn-1} have the bits 
bn-2 and bn-1 in common.  Thus, we evaluate the joint 
probability in (6) in terms of conditional probabilities [5]. 
For N 0 5, this yields 
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If Bi! data are transmitted, then from Figure 1 we can see 
that, neglecting noise-induced errors, the signal will never 
contain a segment of length 3Wmin without a transition in 
level.  Thus, we will never decide that NRZ was transmitted 
when the data are in fact formatted as Bi!,   
  (3) " .0dNRZBi $%!P

It is easy to show that P(NA4%NA3) = 5/8.  The conditional 
probabilities are given by 

  
Also, 
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Substituting these values into (7), and making use of (6) and 
(5), we have 
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The bound in (9) may be used to show, for example, that an 
error probability P(E) & .0001 may be achieved if the 
transmitted data are N 0 44 bits long. 
 
Recall that at the receiver, we sample a segment of the 
received signal in order to determine the data format and the 
data rate.  Suppose that, after doing the P(E) computations 
as above, we determine that we must sample enough of the 
signal to include at least N bits of transmitted data.  How 
many seconds of the received signal does this represent?  
Since we do not yet know the data format or rate, we 
consider a minimum allowable data rate.  For the Multiple 
Access service, the minimum data rate is 100 bps.  If data 
transmitted at this rate are formatted as NRZ, then we 
expect Wmin = 1/100, since the minimum pulse width for 
NRZ is just the bit interval.  If we must have N 0 49 for 
P(E) & .0001, then we should sample a segment about .5 sec 
long. 
 
In practice, the low data rate 100 bps is seldom used.  If it is 
reasonable to assume a higher minimum data rate, the 
length of the sampled segment could be reduced. 
 
 4. USING THE FRAME STRUCTURE 
We mentioned previously that an NRZ-M waveform may be 
obtained by first differentially encoding the data, and then 
formatting the result as NRZ-L.  Data may be formatted as 
Bi!-M in a completely analogous manner.  For NRZ-S or 
Bi!-S, the original data sequence is inverted before 
differential encoding.  From this we see that once the format 
type, NRZ or Bi!, is determined, the signal may be 
demodulated as if it were NRZ-L or Bi!-L.  Then the 
format suffix of the signal may be determined by whether 
the resulting sequence is differentially encoded. 
 
As discussed previously, NRZ and Bi! may be 
distinguished using a statistical approach.  But there is no 
statistical difference between a binary sequence before and 
after differential encoding.  A distinction can be made, 
though, if we know something beforehand about the data 
being encoded.  For example, all of the data-link protocols 
most commonly used for space-to-ground transmission 
employ known binary sequences or sync words for proper 
frame synchronization [1].  If we differentially decode a 
received sequence, and if the decoded sequence has an 
occurrence of one of these sync words, then it is highly 

likely that the transmitted sequence was differentially 
encoded. 
 
A similar approach may be used to determine the details of 
the convolutional encoding that was applied.  For example, 
if Viterbi decoding of a rate-½ convolutional code is 
applied to a received signal, and if a recognized sync word 
is found in the resulting sequence, we conclude that the 
transmitted signal was coded in this way. 
 
The line code and convolutional encoding may be 
determined jointly by trying all the possibilities.  For 
example, suppose a received signal is known to be either L- 
or M-form modulation, and either uncoded or rate-½ 
encoded.  We form the following four sequences: 1) the 
original sequence unchanged, 2) the original sequence after 
differential decoding, 3) the original sequence after Viterbi 
decoding of the convolutional code and 4) the original 
sequence after differential decoding and Viterbi decoding.  
Note that because convolutional encoding is applied before 
modulation at the transmitter, the operations are decoded in 
opposite order at the receiver to obtain sequence 4.  The line 
code and convolutional encoding may be determined by 
searching each of the four sequences for sync word 
occurrences. 
 
This approach provides a simple means of determining the 
type of modulation and convolutional encoding that have 
been applied to a received signal.  A problem occurs, 
though, if one of the possible sync words is very short.  For 
example, the HDLC flag byte, “01111110”, is only eight 
bits long [6].  On average, we would expect this sequence to 
appear about once every 32 bytes in a random data stream.  
Thus, if a sequence is sufficiently long, it may contain a 
spurious occurrence of the flag byte even if it has not been 
properly decoded. 
 
The problem may be addressed by handling HDLC 
separately.  After forming the various decoded sequences 
from our received signal we test each to determine if it 
contains a valid HDLC frame.  If one of them does, then we 
conclude that this is the correctly decoded sequence.  
Otherwise, we proceed to search for the occurrence of a 
sync word other than the flag byte. 
 
It is possible to determine whether a data sequence contains 
a valid HDLC frame by using more detailed knowledge of 
the HDLC frame format.  Specifically, error detection in 
HDLC is accomplished by appending a 16-bit frame-check 
sequence to the body of the frame [6].  Then a bit-stuffing 
operation is performed before the flag byte is attached to the 
beginning and end of the frame. 
 
Bit stuffing prevents the spurious occurrence of the flag 
byte within the body of the HDLC frame.  The flag byte 
contains a sequence of six consecutive ones.  Thus, each 
time a sequence of five consecutive ones occurs in the 
frame body, a zero is stuffed.  For example, “0111111” 
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becomes “01111101” and “0111110” becomes “01111100”. 
 This operation is easily reversed at the receiver.  Note that 
bit stuffing affects the frame-check sequence as well as the 
user data. 
 

 5

To determine if a data sequence contains a valid HDLC 
frame, it is searched for two consecutive flag bytes.  The 
data between these bytes is then destuffed and checked for 
the presence of a properly computed frame-check sequence. 
 If the FCS is correct, then the sequence is declared to be 
valid HDLC data.  Also, note that during idle periods, when 
there are no user data to transmit, a continuous sequence of 
flag bytes is transmitted instead.  Thus, a sequence is also 
declared as valid HDLC data if it contains several 
consecutive flag bytes with no user data. 
 
 5. ESTIMATION ALGORITHM 

 
To test the approach discussed in the previous section, we 
have developed an algorithm that uses frame-structure 
information to recover transmission parameters for a data 
sequence that might be transmitted on a space-to-ground 
link over the Multiple Access service.  The transmission 
parameters of interest are the data-format suffix (-L, -M or 
-S), the convolutional code rate, the node synchronization, 
and the inversion pattern.  These are some of the parameters 
required by the ground-station receiver in order to correctly 
demodulate and decode the received signal.  The data rate 
and the format type (NRZ or Bi!), which were discussed in 
Section 2, are assumed to have been estimated already. 
 
As discussed in the previous section, the data-format suffix 
may be determined by demodulating the received signal as 
if it were NRZ-L or Bi!-L, and then determining if the 
resulting sequence is differentially encoded.  For the 
Multiple Access service, data may be transmitted without 
error-correction coding, or with convolutional encoding at 
rate ½ or rate 1/3 [2].  In practice, rate-1/3 encoding is rare, 
so we check only for the possibility of uncoded or rate-½ 
encoded data. 
 
To decode a data sequence properly, it is also necessary to 
know the generator polynomials that were used by the 
convolutional encoder, but since only one set of 
polynomials is specified for each coding rate used in the 
Multiple Access service, it was not necessary to make a 
separate determination of these. 
 
If a sequence has been convolutionally encoded, though, the 
Viterbi decoder must know which bits were produced by 
each polynomial.  Figure 4 shows the operation of the 
convolutional encoder.  Unencoded bits are clocked into a 
seven-bit shift register from the left.  These seven bits are 
then combined using modulo-2 adders.  The adders shown 
above the shift register represent the operation of 
polynomial “G1”, and the adders below represent the 
polynomial “G2”.  Bits produced by G1 and G2 are clocked 

out alternately onto the output stream.  For a rate-½ 
encoder, two bits are clocked out every time one bit is 
clocked in.  Note that often the output from G2 is inverted, 
as shown in the figure. 
 

 

G2

G1

 Figure 4 – Convolutional Encoder 
 
It is clear from the above that the data presented to the 
Viterbi decoder consist of a sequence which alternates 
between G1 bits and G2 bits.  When we begin to 
demodulate the data, we will not know if the first bit we 
receive is from G1 or G2.  The process of determining this 
is called node synchronization. 
 
As was mentioned previously, Figure 4 shows that the G2 
bits are inverted before they are clocked out.  This is done 
to avoid long strings of 1’s or 0’s in the output stream.  It is 
typical in convolutional encoding to invert the bits from one 
or more polynomials.  The specification for which 
polynomials are to be inverted we call the inversion pattern. 
It is of course necessary to know this in order to decode the 
signal properly. 
 
The algorithm that we have developed estimates all of these 
parameters using frame-structure information, as discussed 
in the previous section.  We assume that the satellite 
transponder transmits data using either HDLC [6] or the 
CCSDS TM data-link protocol [7].  We decode the received 
data sequence under all the possible sets of assumptions 
regarding the values of the parameters we are trying to 
estimate.  The various output sequences are stored in a 
table, and then each sequence is checked to see if it 
conforms to one of the possible frame formats.  Such a 
sequence is assumed to have been decoded correctly.  Thus, 
we conclude that the parameter values used in decoding it 
are correct, and these become our estimates for 
reconfiguring the receiver. 
 
Our algorithm recognizes a decoded sequence as 
conforming to the TM frame format if the sequence contains 
an appropriate sync word.  One of these has the hex 
designation 1ACFFC1D. TM uses other longer sync words 
for data that have been turbo coded.  Because the HDLC 
flag byte is so short, we use more detailed information 
about its frame structure, as discussed previously, in 
determining whether a decoded sequence was generated 
under this protocol. 
 



 6. SIMULATION AND RESULTS 

 
We have developed a Matlab simulation that exercises the 
algorithm described in the previous section.  Under each of 
the possible frame structures, the simulator generates 1000 
random data sequences encoded under each of the possible 
assumptions about the transmission parameters.  Each time 
a data sequence is generated, it is fed to the parameter-
estimation algorithm.  The estimates returned by the 
algorithm are compared with the assumptions used in 
encoding the sequence.  If one or more parameters were 
estimated incorrectly, an error is recorded, and the data 
sequence giving rise to the error is logged. 
 
The random data sequences were generated using simple 
models of the assumed protocols.  When the CCSDS TM 
protocol was assumed, the sequences consisted of five 
frames, each with 200 bits of random user data prefixed by 
an appropriate sync word.  The first frame of each sequence 
is truncated at a random point, so that the estimation 
algorithm does not know the starting position of the data.  
The HDLC frames were generated similarly, except that a 
frame-check sequence is appended to the user data, and then 
a bit-stuffing operation is applied, as described in Section 4, 
before the flag byte is attached. 
 
When an error occurs in our simulation, we use the logged 
sequence to analyze the cause.  One problem we have 
discovered relates to the Viterbi decoder.  Because 
convolutional encoding is intended to correct errors, if two 
input sequences are very similar, they may in fact be 
decoded to the same sequence.  In our initial simulation 
runs, we found that sequences encoded under very different 
parameter assumptions sometimes in fact produced very 
similar output, close enough that the output of the Viterbi 
decoder under the two cases was the same.  This meant that 
we could not use these output sequences to distinguish 
which set of parameter assumptions was correct. Because 
the two sets of parameters produce very similar output, if 
the receiver is configured using the wrong set of 
parameters, it may still decode the incoming signal correctly 
most of the time, but will be less robust to the types of bit 
errors against which convolutional encoding was meant to 
provide protection. 
 
We were able to alleviate this problem by using the average 
value of the final state metric from the Viterbi decoder as a 
tiebreaker.  The sequence with the highest average metric 
was considered to have been decoded correctly.  With this 
modification in place, repeated runs of the simulator have 
resulted in no set of 1000 repetitions with more than one 
error.  Recall that each set of repetitions is made under a 
specific assumption regarding the frame structure and the 
values of the transmission parameters.  Under most sets of 
assumptions, 1000 repetitions will result in no errors.  This 
is especially true for frame structures with long sync words, 
including all of the TM sync words.  Thus, the total error 

rate is less than .001.  We continue to investigate the 
reasons for the few residual errors. 
  
 7. CONCLUSIONS 

Our simulation results show that using frame-structure 
information, as describe in Section 4, is a viable approach 
for estimating transmission parameters that do not have a 
clear statistical signature.  We note that we had more 
success in the estimation task when the CCSDS TM 
protocol was employed, than when HDLC was used.  This 
is because TM frames include long sync words that are 
unlikely to occur spuriously in invalid frames.  This makes 
it easier to recognize a correctly decoded sequence. 
 
We were aided in our task by the fact that the number of 
possible transmission-parameter values was small; e.g., only 
one rate for the convolutional encoding.  Larger numbers of 
parameters, and larger numbers of possible values for each 
parameter, would have made it necessary to produce a much 
greater number of decoded sequences to examine.  This 
would have made the computational task more burdensome, 
of course, but because we are considering the receiver at the 
ground station, we expect that sufficient computing power 
will be available.  We note that the decoding task described 
here lends itself well to parallel computing. 
 
The more serious problem is that large numbers of decoded 
sequences may make more difficult the problem of deciding 
which one of them was decoded correctly.  An example of 
this is the Viterbi decoding problem discussed in the 
previous section. 
 
Also, it is clear that in general, deciding parameter values 
from statistics, as discussed in Section 2, is preferable to 
using frame-structure information.  This is because the 
effects of various transmission parameters on the final 
output sequence are highly coupled, and each parameter 
adds a great deal of complexity to the problem.  Note from 
Section 2 that the task of estimating the data rate and data 
format type, which uses only statistics, is completely 
independent from the estimation of the other parameters.  In 
Section 2, the estimation procedure for each parameter is 
simple, and only slightly coupled with the other. 
 
For this reason, it is worthwhile to try to discover statistical 
approaches for other parameters as well.  A likely 
possibility is convolutional encoding, since this may be 
viewed, in a sense, as a filtering operation, and because it is 
intended to introduce redundancy. 
 
When using frame-structure information, there is a tradeoff 
between the amount of such information you use and the 
complexity of the resulting algorithm.  In order to make our 
algorithm more generally applicable, we used as few details 
of the data-link protocols as possible in performing our 
estimation task.  We hoped only to use sync-word 
information, and though this approach did not prove to be 
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sufficient, we broke from it only when necessary.  Our 
handling of HDLC is an example of this. 
 
As the number of parameters to be estimated using frame–
structure information increases, it is likely that the size and 
complexity of the estimation algorithms will grow quickly if 
we wish to keep the error rate low.  In such a case, it may be 
worthwhile to reduce the number of possible parameter 
values that are tested.  These values would be the ones that 
are used most commonly, and would result in a correct 
determination most of the time. 
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