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ABSTRACT

The ultimate goal of blind speech separation is to separate
individual speech (source) signals from a set of convolu-
tional mixtures of these signals. This is a difficult problem
given the overlap in both time- and frequency-domains of
the sources not to mention compounding acoustical effects.
Current approaches to this problem have yielded only mod-
est results. In this paper, we extend a blind separation algo-
rithm (used for instantaneous mixtures) to compensate for
non-time aligned sources in the mixtures. While this is a
special case of the convolutional mixing model, it takes into
account propagation delays and can thus be used in environ-
ments where echo is minimal.

1. INTRODUCTION

Separation of convolutional mixtures of speech signals has
received considerable attention in the research community
over the last two years due to broad applications in audio-
interfaces, hearing aids, and speech recognition systems [1],
[2], [3]. In this problem, illustrated in Fig. 1, we assume
two unknown speech signals, s1 and s2 are filtered by aji

and mixed to produce two mixture signals x1 and x2. The
filter, aji represents the length-N , unknown room impulse
response from source i to microphone j. In the blind sep-
aration problem, we wish to produce y1 and y2 which ap-
proximate s1 and s2 given only x1 and x2.

The blind speech separation problem is a very difficult
one given the complicated nature of speech signals (non-
stationary, overlap in time- and frequency-domains, etc . . .
). Convolutional mixing further complicates the problem
due to causality and stability restrictions on the inverse fil-
ters not to mention length requirements in the FIR approxi-
mation. Research results of the general problem are modest
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Fig. 1. Speech signal separation problem

at best with typical Signal-to-Interference Ratio Improve-
ments (SIRIS) on the order of 10-15dB [3], [4].

We mathematically describe the general blind speech
separation problem as follows. The mixing equation is given
by

x(n) = A(n) ∗ s(n) (1)

where

x(n) =
[
x1(n) x2(n)

]T
,

s(n) =
[
s1(n) s2(n)

]T
(2)

is the vector of input, source signals respectively, A(n) is
2 × 2 matrix of (possibly time-varying) impulse responses

A(n) =
[

a11(n) a12(n)
a21(n) a22(n)

]
, (3)

and ∗ is the convolution operator. The jth mixture signal



from (1) is given by

xj(n) = aT
j1(n)s1(n) + aT

j2(n)s2(n) (4)

where

si(n) =
[
si(n) . . . si(n−N + 1)

]T
. (5)

The objective is to determine a separation matrix,

W(n) =
[

w11(n) w12(n)
w21(n) w22(n)

]
(6)

such that

y(n) = W(n) ∗ x(n) (7)

where

y(n) =
[
y1(n) y2(n)

]T
(8)

is the vector of output signals approximating the separated
sources. Clearly, choosing W such that WA = I (identity
matrix) or J (counter identity matrix) would separate the
signals (assuming A is invertible) but A is unknown.

Prior to publication of research on the general separa-
tion problem of convolutional mixtures, the special case of
linear mixtures was first investigated [1]. In the linear mix-
ing model, we assume mixtures are composed of scaled and
time-aligned source signals (no filtering). Thus the mixing
and separation matrices are composed of scalar elements

A(n) =
[

a11(n) a12(n)
a21(n) a22(n)

]
(9)

and

W(n) =
[

w11(n) w12(n)
w21(n) w22(n)

]
. (10)

In the study of speech separation under linear mixing mod-
els, a computationally efficient Kurtosis Maximization Al-
gorithm (KMA) was proposed and shown to lead excellent
separation results.

In this paper, we extend KMA for separation of linear
mixtures of speech signals to include arbitrary delays in the
mixing model. In this way, we at least account for propaga-
tion delays from speakers to microphones and can operate
in conditions where echo and reverberation are minimal.

2. KURTOSIS MAXIMIZATION ALGORITHM FOR
LINEAR MIXTURES OF SPEECH

The KMA is based on the fundamental assumption that lin-
ear mixtures of speech signals have a kurtosis, defined as

κx ≡
E

[
x4

]
{E [x2]}2

, (11)

y(n) = W(n)x(n)
σ̂2

i (n) = λ2σ̂
2
i (n − 1) + (1 − λ2)x2

i (n)
r̂12(n) = λ2r̂12(n− 1) + (1 − λ2)x1(n)x2(n)
αi = 4y3

i (n)
βi = −wi1(n)r̂12(n)x1(n) −wi2(n)σ̂2

2(n)x1(n)+
wi1(n)σ̂2

1(n)x2(n) + wi2(n)r̂12(n)x2(n)
γi =

[
w2

i1(n)σ̂2
1(n) + 2wi1(n)wi2(n)r̂12(n)+

w2
i2(n)σ̂2

2(n)
]−3

C(n) =
[

−α1β1γ1w12(n) α1β1γ1w11(n)
−α2β2γ2w22(n) α2β2γ2w21(n)

]

W(n + 1) = W(n) + µ̃
||C(n)||22

C(n)

Fig. 2. Normalized Kurtosis Maximization Algorithm
(KMA) for speech separation.

less than that for either source [1]. Under this assumption,
a simple and computationally inexpensive gradient ascent
algorithm is employed to maximize kurtosis of the output
signals thereby separating the source speech signals from
the mixture. The idea is expressed as

W(n + 1) = W(n) + µ� κy

= W(n) + µ




∂κy1
∂w11

∂κy1
∂w12

∂κy2
∂w21

∂κy2
∂w22




= W(n) + µC(n) (12)

where µ is the step size, �κy is the gradient of the kurtosis
of the output signals with respect to the elements of the sep-
aration matrix, and C(n) is the correction matrix used in the
update rule. Statistical expectations in the correction matrix
are approximated by instantaneous or auto-regressive (AR)
estimators.

Better performance has been reported when using a nor-
malized version of KMA [5]. In this case, the correction
matrix, C(n) is scaled by its �2 norm

W(n + 1) = W(n) +
µ̃

||C(n)||22
C(n) (13)

where µ̃ is the normalized step size and

||C(n)||22 = max
{
eigenvalue

[
C(n)CT (n)

]}
.(14)

The complete normalized KMA is given in Fig. 2.
In simulations, the quality of separation can be mea-

sured by examining how close the product matrix, WA is
to being diagonal or anti-diagonal. This measure simply
examines the ratio of the largest element to smallest ele-
ment of each row and is equivalent to measuring the power
of the desired source to that of the undesired source or the
signal-to-interference ratio (SIR). Informal listening evalua-
tions indicate a separation ratio of 20dB or higher produces



a fairly distinct source output. SIRs near 0dB indicate no
real source separation has occurred. Simulations using the
normalized KMA for speech separation (linear mixtures)
have shown very good performance with mean SIRs on the
order of 25-40dB [5].

3. EXTENDING KMA TO INCLUDE
PROPAGATION DELAYS

We now wish to extend the KMA to include arbitrary prop-
agation delays from sources to microphones. In this case,
the room impulse responses are of the form

aji(n) =
[

0 . . . 0 aji(n) 0 . . . 0
]T

(15)

where the Dji element is aji and Dji is the propagation de-
lay (in samples) from the ith source to the jth microphone.

In order to compensate for the propagation delays, we
include delays dij , in the elements of the separation matrix
so that we can time-align the undersired source from the
mixtures and (hopefully) eliminate it. We therefore have

W(n) =
[

w11δ(n− d11) w12δ(n− d12)
w21δ(n− d21) w22δ(n− d22)

]
.(16)

Applying (16) to (7) we have as outputs

y1(n) = w11(n)x1(n− d11) + w12(n)x2(n− d12)
y2(n) = w21(n)x1(n− d21) + w22(n)x2(n− d22).(17)

Setting

d11 = d22 = 0
d12 = D12 −D22

d21 = D21 −D11 (18)

and substituting into (17), we have

y1(n) = w11(n)a11(n)s1(n−D11)+
w12(n)a21(n)s1(n−D21 −D12 + D22) +
[w11(n)a12(n) + w12(n)a22(n)]s2(n−D12) (19)

and

y2(n) = w22(n)a22(n)s2(n−D22)+
w21(n)a12(n)s2(n−D12 −D21 + D11) +

[w22(n)a21(n) + w21(n)a11(n)]s1(n−D21). (20)

If we build (16) correctly, we can eliminate the undesired
sources (third terms) in (19) and (20) thereby achieving sep-
aration. However, the output will be an “echoed” version of
the desired source.

In order to estimate the relative delays, d12 and d21 in
(16), we compute the cross-correlation between the mixture
signals

p(m) = E[x1(n)x2(n + m)] (21)

Estimate d12(n) and d21(n) from (21) and (22)
Compute y1(n) ,y2(n) from (17)
z1(n) = x1(n), z2(n) = x2(n− d12)
z3(n) = x1(n), z4(n) = x2(n + d21)
σ̂2

i (n) = λ2σ̂
2
i (n − 1) + (1 − λ2)z2

i (n)
r̂12(n) = λ2r̂12(n− 1) + (1 − λ2)z1(n)z2(n)
r̂34(n) = λ2r̂34(n− 1) + (1 − λ2)z3(n)z4(n)
αi = 4y3

i (n)
β1 = −w11(n)r̂12(n)z1(n) −w12(n)σ̂2

2(n)z1(n)+
w11(n)σ̂2

1(n)z2(n) + w12(n)r̂12(n)z2(n)
β2 = −w21(n)r̂34(n)z3(n) −w22(n)σ̂2

4(n)z3(n)+
w21(n)σ̂2

3(n)z4(n) + w22(n)r̂34(n)z4(n)
γ1 =

[
w2

11(n)σ̂2
1(n) + 2w11(n)w12(n)r̂12(n)+

w2
12(n)σ̂2

2(n)
]−3

γ2 =
[
w2

21(n)σ̂2
3(n) + 2w21(n)w22(n)r̂34(n)+

w2
22(n)σ̂2

4(n)
]−3

C(n) =
[

−α1β1γ1w12(n) α1β1γ1w11(n)
−α2β2γ2w22(n) α2β2γ2w21(n)

]

W(n + 1) = W(n) + µ̃
||C(n)||22

C(n)

Fig. 3. Extended KMA to include propagation delays.

where E is the expectation operator. Then indices associ-
ated with peaks in the cross correlation will determine the
delay estimates in (18):

d12 =
∣∣arg−∞<m<0 max [p(m)]

∣∣
d21 = arg0<m<∞ max [p(m)] . (22)

In order to update W(n), we modify the normalized KMA
(Fig. 2) to include appropriate delay estimates as described
above. The complete separation algorithm for mixtures with
unknown delays is given in Fig. 3.

4. RESULTS

In the following simulation results, we choose two source
speech signals from the TIMIT speech corpus and digitally
synthesize the mixtures according to (1). Algorithm param-
eters were selected as µ̃ = 0.0005 and λ = 0.99995.

As a reference, we first show results of normalized KMA
when there are no propagation delays in the mixture. In this
experiment, we randomly choose the linear mixing matrix,

A =
[

0.9501 0.6068
0.2311 0.4860

]
(23)

and initialize the separation matrix as

W(0) =
[

1.0 0.0
0.0 1.0

]
. (24)

Fig. 4 illustrates the learning curve for the speech separation
under the linear mixture of (23). We note that after a few



seconds, SIRs on the order of 40dB are achieved indicating
excellent separation.
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Fig. 4. Learning curve for speech separation (instantaneous
mixture).

In the next experiment, we measure the performance of
the algorithm under mixtures which with unknown delays.
For this case we randomly choose the aji [same numbers as
in (23)] and the propagation delays as

D11 = 10, D12 = 50, D21 = 70, D22 = 20. (25)

A plot of delay estimates using the cross-correlation method
is illustrated in Fig. 5 and indicates accurate estimation of
the relative delays. The resulting learning curve of the algo-
rithm is given in Fig. 6. We note that after a ten seconds,
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Fig. 5. Delay estimates using cross-correlation method.

SIRs on the order of 15-20dB are achieved indicating good
separation.
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Fig. 6. Learning curve for speech separation (mixture con-
tains scaled and delayed sources).

5. CONCLUSIONS

In this paper, we have extended a previously published algo-
rithm for separation of two speech signals from two linear
mixtures to now include arbitrary propagation delays of the
sources in the mixtures. This extension assumes a more re-
alistic mixing model. Results of the extension yield good
separation quality with minimal computational overhead.
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