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ABSTRACT

In many real-world applications of blind source separation,
the number of mixture signals, M available for analysis of-
ten differs from the number of sources, L which may be
present. In this paper, we extend a successful and efficient
kurtosis maximization algorithm used in speech separation
of two sources from two linear mixtures for use in prob-
lems with arbitrary numbers of sources and mixtures. We
examine three cases: underdetermined (M < L), critically-
determined (M = L), and overdetermined (M > L). In
each of these cases, we present simulation results (using the
TIMIT speech corpus) and discuss observed algorithm lim-
itations.

1. INTRODUCTION

The separation of individual speech signals (sources) from
mixtures of other speech signals and noise has been actively
investigated over the last few years [1],[2],[3]. Applications
of this work include audio-interfaces, hearing aids, multi-
media, and speech recognition systems. Given the com-
plicated nature of speech this is a difficult problem com-
pounded by environmental effects such as noise and rever-
beration. Furthermore, there is a strong desire for natural
sounding separated outputs and a simple algorithm suitable
for real-time operation.

In this paper, we generalize a previously published method
for blind separation of two speech signals from two mix-
tures to separation of L sources from M mixtures [1]. We
evaluate the separation performance of the generalized al-
gorithm for three cases: undetermined (M < L), critically-
determined (M = L), and overdetermined (M > L). In
each of these cases, we present simulation results (using the
TIMIT speech corpus) and discuss observed algorithm lim-
itations.
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2. TWO-SOURCE, TWO-MIXTURE KURTOSIS
MAXIMIZATION ALGORITHM

2.1. Problem Formulation

In the two-source, two-mixtureblind speech separation prob-
lem illustrated in Fig. 1, we assume two unknown speech
signals, s1 and s2 are mixed in a linear fashion to pro-
duce two mixture signals x1 and x2. (The more realis-
tic problem setting would assume convolutional mixtures,
however, this is a much more difficult problem currently
with no known solution which produces large Signal-to-
Interference Ratios.) We wish to produce y1 and y2 which
approximate s1 and s2.
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Fig. 1. Speech signal separation problem

Mathematically we may express the mixing model as

x(n) = A(n)s(n) (1)

where

s(n) =
[

s1(n) s2(n)
]T

,

x(n) =
[

x1(n) x2(n)
]T

(2)



are the vectors of source, mixture signals respectively and
A(n) is the unknown, possibly time-varying, 2 × 2 mixing
matrix composed of scalar elements. The objective is to
compute a separation matrix, W(n) such that

y(n) = W(n)x(n) (3)

where

y(n) =
[

y1(n) y2(n)
]T

(4)

is the vector of output signals approximating the separated
sources. Clearly, choosing W such that WA = I (iden-
tity matrix) or J (counter identity matrix) would invert the
mixing process and separate the signals (assuming A is in-
vertible) but A is not known.

In simulations, the quality of separation can be mea-
sured by examining how close the product matrix WA is
to being diagonal or anti-diagonal. This measure simply
examines the ratio of the largest element to smallest ele-
ment of each row and is equivalent to measuring the power
of the desired source to that of the undesired source or the
signal-to-interference ratio (SIR). Informal listening evalu-
ations indicate a separation ratio of 20dB or higher produces
a fairly distinct source output. Duplicate (same) source out-
puts manifest themselves in product matrices which have
the larger elements in the same column and thus negative
SIRs. Finally, SIRs near 0dB indicate no real source sepa-
ration has occurred.

2.2. Algorithm Development

The Kurtosis Maximization Algorithm (KMA) is based on
the fundamental assumption that linear mixtures of speech
signals have a kurtosis, defined as

κx ≡
E

[
x4

]
{E [x2]}2

, (5)

less than that for either source [1]. Under this assumption,
a simple and computationally inexpensive gradient ascent
algorithm, is employed to maximize kurtosis thereby sepa-
rating the source speech signals from the mixture. The idea
is expressed as

W(n + 1) = W(n) + µ � κy

= W(n) + µ




∂κy1
∂W11

∂κy1
∂W12

∂κy2
∂W21

∂κy2
∂W22




= W(n) + µC(n) (6)

where µ is the step size, �κy is the gradient of the kurtosis
of the output signals with respect to the elements of the sep-
aration matrix, and C(n) is the correction matrix used in the

update rule. Statistical expectations in the correction matrix
are approximated by instantaneous or auto-regressive (AR)
estimators.

A normalized version of the algorithm has been pro-
posed and shown to yield better performance [4]. In the
normalized KMA, we scale the correction matrix, C(n) by
its 
2 norm

W(n + 1) = W(n) +
µ̃

||C(n)||22
C(n) (7)

where µ̃ is the normalized step size and

||C(n)||22 = max
{
eigenvalue

[
C(n)CT (n)

]}
. (8)

In the two-source, two-mixture speech separation problem,
the normalized KMA has been shown to provide mean SIRs
on the order of 25-40dB [4].

3. GENERALIZED, NORMALIZED KMA

In the derivation of the generalized KMA speech separation
algorithm, we assume L unknown speech signals, s1, . . . , sL

are mixed in a linear fashion to produce M mixture signals,
x1, . . . , xM . We wish to produce y1, . . . , yL which approx-
imate s1, . . . , sL (or some other permutation of the signal
set).

Mathematically we may express the generalized mixing
model as

x(n) = A(n)s(n) (9)

where

s(n) =
[

s1(n), . . . , sL(n)
]T

,

x(n) =
[

x1(n), . . . , xM(n)
]T

(10)

are the vectors of source, mixture signals respectively and
A(n) is the M × L mixing matrix composed of scalar el-
ements. The objective is to compute a L × M separation
matrix, W(n) such that

y(n) = W(n)x(n) (11)

where

y(n) =
[

y1(n), . . . , yL(n)
]T

(12)

is the vector of output signals approximating the separated
sources.

As in the two source, two mixture case, we formulate a
multidimensional objective function composed of the kur-
toses of the output signals

J = [κy1 , . . . , κyL]T . (13)



The gradient of J with respect to the elements of the sepa-
ration matrix is given by

∂Jl

∂Wlm
=

4 ×
E

[
y3

l xm

]
E

[
y2

l

]
− E

[
y4

l

]
E [ylxm]

{E [y2
l ]}3 . (14)

Second order statistics in (14) are approximated at time n as

E
[
y2

l

]
≈

M∑
i=1

M∑
j=1

Wli r̂ij(n)Wlj

E [ylxm] ≈
M∑
i=1

Wli r̂im(n) (15)

where r̂ij(n) is the auto-regressive estimate of the cross cor-
relation, E [xixj]

r̂ij(n) ≈ λr̂ij(n − 1) + (1 − λ)xi(n)xj(n). (16)

Fourth order statistics in (14) are approximated at time n
with instantaneous estimators

E
[
y3

l xm

]
≈ y3

l (n)xm(n)

E
[
y4

l

]
≈ y4

l (n). (17)

Substitution of (15) and (17) into (14) yields the lmth ele-
ment of the L × M correction matrix, C(n) which is then
used in the L × M version of (7).

4. RESULTS

In order to measure the performance of the generalized KMA
algorithm, simulations were conducted. Source speech sig-
nals were chosen from the TIMIT speech corpus and mix-
tures were digitally synthesized according to the mixing ma-
trix. Algorithm parameters were selected as µ̃ = 0.0001
and λ = 0.99995. The results for four cases are described
below.

4.1. Critically-Determined: Three Sources, Three Mix-
tures

In the critically-determined case, we choose the mixing ma-
trix at random,

A =


 0.9501 0.4860 0.4565

0.2311 0.8913 0.0185
0.6068 0.7621 0.8214


 (18)

and initialize the separation matrix as

W(0) =


 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0


 . (19)

Fig. 2 illustrates the SIRs of the three source, three mix-
ture simulation. We note in this simulation after a short
adaptation period, excellent separation on the order of 30dB
or higher.
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Fig. 2. Signal-to-Interference Ratios of three source, three
mixture simulation.

4.2. Over-Determined: Two Sources, Three Mixtures

In the over-determined case, we choose the mixing matrix
at random,

A =


 0.9501 0.4860

0.2311 0.8913
0.6068 0.7621


 (20)

and initialize the separation matrix as

W(0) =
[

1.0 0.0 0.0
0.0 1.0 0.0

]
(21)

Fig. 3 illustrates the SIRs of the two source, three mix-
ture simulation. We note in this simulation after a short
adaptation period, excellent separation on the order of 30dB
or higher. This is an expected result given the results in Sec-
tion 4.1.

4.3. Under-Determined: Three Sources, Two Mixtures

In the under-determined case, we choose the mixing matrix
at random,

A =
[

0.9501 0.6068 0.8913
0.2311 0.4860 0.7621

]
(22)

and initialize the separation matrix as

W(0) =


 1.0 0.0

0.0 1.0
0.5 0.5


 (23)
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Fig. 3. Signal-to-Interference Ratios of two source, three
mixture simulation.

Fig. 4 illustrates the SIRs of the three source, two mix-
ture simulation. We note in this simulation, separation of
sources is poor with two sources having a minor 5dB SIR
improvement while the other source is not separated at all.
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Fig. 4. Signal-to-Interference Ratios of three source, two
mixture simulation.

5. CONCLUSIONS

In this paper, we have generalized a previously published
algorithm for separation of L speech signals from M linear
mixtures of these signals. The algorithm performs very well
(SIR ≈ 30dB) for L ≤ M but does not produce satisfactory
results for L > M .
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